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Uniform convergence of the multigrid V -cycle on graded meshes
for corner singularities

James J. Brannick, Hengguang Li∗,† and Ludmil T. Zikatanov

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, U.S.A.

SUMMARY

This paper analyzes a multigrid (MG) V -cycle scheme for solving the discretized 2D Poisson equation with
corner singularities. Using weighted Sobolev spaces Km

a (�) and a space decomposition based on elliptic
projections, we prove that the MG V -cycle with standard smoothers (Richardson, weighted Jacobi, Gauss–
Seidel, etc.) and piecewise linear interpolation converges uniformly for the linear systems obtained by
finite element discretization of the Poisson equation on graded meshes. In addition, we provide numerical
experiments to demonstrate the optimality of the proposed approach. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Multigrid (MG) methods are arguably one of the most efficient techniques for solving the large
systems of algebraic equations resulting from finite element discretizations of elliptic boundary
value problems. Many of the known results on the convergence properties of MG methods for
elliptic equations can be found in monographs and survey papers by Bramble [1], Hackbusch [2],
Trottenberg et al. [3], Xu [4] and the references therein.

It is well known that the geometry of the boundary and changes in the boundary condition can
influence the regularity of the solution [5–12]. In particular, if the domain possesses re-entrant
corners, cracks, or there exist abrupt changes in the boundary conditions, then the solution of
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the elliptic boundary value problem may have singularities in H2—we hereafter refer to singu-
larities of these types as corner-like singularities. One possible approach for obtaining accurate
numerical approximations to the solutions nearby these types of singularities is to make use of
graded meshes [6, 13–15], for which the quasi-optimal convergence rates of the numerical solu-
tions can be recovered by using an analysis based on weighted Sobolev spaces. The analysis of
the convergence rate of MG methods in such settings is, however, non-trivial. The difficulties
that arise are due primarily to the lack of regularity of the solution and the non-uniformity of
the mesh.

A result for the uniform convergence of the MG method assuming full regularity was derived by
Braess and Hackbusch [16]; in Brenner’s paper [17], the analysis of the convergence rate for only
partial regularity was presented; Bramble et al. [18] developed the convergence estimate without
regularity assumptions for an L2-projection-based decomposition. In addition, on graded meshes,
using the approximation property in [14], Yserentant [19] proved the uniform convergence of the
MG W -cycle with a particular iterative method on each level for piecewise linear functions. There
are also many other more classical convergence proofs that use algebraic techniques and derive
convergence results based on assumptions related to, but nevertheless different from, the regularity
of the underlying partial differential equation [20, 21].

In this paper, using a space decomposition for elliptic projections and an estimate on the weighted
Sobolev space Km

a , we prove the uniform convergence of the MG V -cycle with standard subspace
smoothers (Richardson, weighted Jacobi, Gauss–Seidel, etc.) for elliptic problems with corner-
like singularities, discretized using graded meshes. To date, this type of convergence analysis
has been carried out only for problems with full elliptic regularity. The result presented here
establishes the uniform convergence of the MG method for problems with less regular solutions
discretized using graded meshes that appropriately capture the correct behavior of the solution near
the singularities. Although the main convergence theorem can be modified for elliptic problems
discretized on general graded meshes, for exposition, we restrict our discussion to the graded mesh
refinement (GMR) strategy developed by Băcuţă et al. [6]. Before proceeding, we mention that,
with appropriate modifications, our analysis for linear elements can also be applied to higher-order
finite element methods.

1.1. Preliminaries and notation

Let � be a bounded polygonal domain, possibly with cracks, in R2 and consider the following
prototype elliptic equation with mixed boundary conditions:

−�u = f in �

u = 0 on �D�

�u/�n = 0 on �N�

(1)

where �D� and �N� consist of segments of the boundary, and we assume that the Neumann
boundary condition is not imposed on adjacent sides of the boundary. We note that, in the Sobolev
space Hm , corner-like singularities appear in the solution near vertices of the domain. Here, by
vertices, we mean the points on �̄ where corner-like singularities in H2(�) are located, namely,
the geometric vertices on re-entrant corners, crack points, or points with an interior angle �>�/2,
where the boundary conditions change.
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Let H1
D(�)={u∈H1(�)| u=0 on �D�} be the space of H1(�) functions with zero trace on

�D�, Tj , 0� j�J , be a sequence of appropriately graded and nested triangulations of �, and Mj ,
0� j�J , be the finite element space associated with the linear Lagrange triangle [22] on Tj . Then,

M0⊂M1⊂·· ·⊂Mj ⊂·· ·⊂MJ ⊂H1
D(�)

Let A be the differential operator associated with Equation (1). Solving (1) amounts to finding an
approximation uJ ∈MJ such that

a(uJ ,vJ )=(AuJ ,vJ )=(∇uJ ,∇vJ )=( f,vJ ) ∀vJ ∈MJ

Denoting by NJ the dimension of the space MJ , by using a GMR strategy, one can recover the
following quasi-optimal rate of convergence for the finite element approximation uJ ∈MJ on TJ :

‖u−uJ‖H1(�)�CN−1/2
J ‖ f ‖L2(�)

The main objective of this paper is to prove the uniform convergence of the MG V -cycle
with standard subspace smoothers (Richardson, weighted Jacobi, Gauss–Seidel, etc.) and linear
interpolation applied to the 2D Poisson equation discretized using piecewise linear functions on
graded meshes obtained via the GMR strategy introduced in [6]. Moreover, we shall show that the
convergence rate, c, of the MG V -cycle satisfies

c� c1
c1+c2n

where c1 and c2 are mesh-independent constants related to the elliptic equation and the smoother,
respectively, and n is the number of iterative solves on each subspace. We note that this result can
also be used to estimate the efficiency of other subspace smoothers on graded meshes.

The rest of this paper is organized as follows. In Section 2, we introduce the weighted Sobolev
space Km

a (�) for boundary value problem (1) and review the method of subspace corrections
(MSC). In addition, we briefly describe the GMR strategy under consideration here for generating
the sequence of graded meshes. Then, in Section 3, we prove the approximation and smoothing
properties, which in turn lead to our main MG convergence theorem. Section 4 contains numerical
results of the proposed method applied to problem (1).

2. WEIGHTED SOBOLEV SPACES AND THE MSC

In this section, we begin by introducing the weighted Sobolev space Km
a (�) and the mesh refinement

strategy under consideration for recovering quasi-optimal rates of convergence of the finite element
solution. Then, we present the MSC and a technique for estimating the norm of the product of
non-expansive operators.

2.1. Weighted Sobolev spaces and graded meshes

It has been shown in [6–8, 14, 23] that with a careful choice of the parameters in the weight, the
singular behavior of the solution in Equation (1) can be captured well in the following weighted
Sobolev spaces. Namely, there is no loss of regularity of the solution in these spaces and the
corresponding refinements of meshes are optimal in the sense of Theorem 2.3.
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Let (x, y)∈ �̄ be an arbitrary point and S={Si } be the set of vertices of the domain, on which
the solution has singularities in H2(�). Denote by ri (x, y) the distance from (x, y) to the vertex
Si ∈ S and let �(x, y) be a smooth function on �̄, such that �=ri in the neighborhood of Si ,
and ��C>0 otherwise. Then, the weighted Sobolev space Km

a (�), m�0, is defined as follows
[6, 11]:

Km
a (�)={u∈Hm

loc(�)| �i+ j−a�ix�
j
yu∈L2(�), i+ j�m}

The corresponding Km
a -norm and seminorm for any function v∈Km

a (�) are

‖v‖2Km
a (�) := ∑

i+ j�m
‖�i+ j−a�ix�

j
yv‖2L2(�)

|v|2Km
a (�) := ∑

i+ j=m
‖�m−a�ix�

j
yv‖2L2(�)

Note that � is equal to the distance function ri (x, y) near the vertex Si . Thus, we have the following
proposition and mesh refinements as in [6, 15].
Proposition 2.1
We have |v|K 1

1 (�)
=∼|v|H1(�), ‖v‖K 0

1 (�)�C‖v‖L2(�), and the Poincaré type inequality ‖v‖K 0
1 (�)�

C |v|K 1
1 (�) for v∈K 1

1 (�)∩{v|�D� =0}.
Here, a=∼b means there exist positive constants C1, C2, such that C1b�a�C2b.

Definition 2.2
Let � be the ratio of decay of triangles near a vertex Si ∈ S. Then, for every �<min(�/t�i ), one can
choose �=2−1/�, where �i is the interior angle of vertex Si , t=1 on vertices with both Dirichlet
boundary conditions, and t=2 if the boundary condition changes type at Si . For example, �i =2�
and t=1 on crack points with both Dirichlet boundary conditions. In the initial triangulation, we
require that each triangle contains at most one point in S, and each Si needs to be a vertex of
some triangle. In other words, no point in S is sitting on the edge or in the interior of a triangle.
Let Tj ={Tk} be the triangulation after j refinements. Then, for the ( j+1)th refinement, if the
function � is bounded away from 0 on a triangle (no point in S contained), new triangles are
obtained by connecting the mid-points of the old one. However, if Si is one of the vertices of a
triangle 	Si BC , then we choose a point D on Si B and another point E on SiC such that the
following holds for the ratios of the lengths

�= Si D/Si B= Si E/SiC

In this way, the triangle 	Si BC is divided into four smaller triangles by connecting D, E , and
the mid-point of BC (see Figure 1).

We note that other refinements, for example, those found in [13, 14] also satisfy this condition,
although they follow different constructions. We now conclude this subsection by restating the
following theorem derived in [6, 15].
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Figure 1. Mesh refinements: triangulation after one refinement, �=0.2.

Theorem 2.3
Let u j ∈Mj be the finite element solution of Equation (1) and denote by N j the dimension of Mj .
Then, there exists a constant B1= B1(�,�,�), such that

‖u−u j‖H1(�)�B1N
−1/2
j ‖ f ‖K 0

�−1(�)�B1N
−1/2
j ‖ f ‖L2(�)

for every f ∈L2(�), where �<1 is determined from Definition 2.2, Mj is the finite element space
of linear functions on the graded mesh Tj , as described in the introduction.

Remark 2.4
For u /∈H2(�), this theorem follows from the fact that the differential operator A :Km+1

1+� (�)∩{u=
0, on �D�}→Km−1

−1+�(�),m�0, in Equation (1), is an isomorphism between the weighted Sobolev
spaces.

2.2. The method of subspace corrections

In this subsection, we review the MSC and provide an identity for estimating the norm of the
product of non-expansive operators. In addition, Lemma 2.6 reveals the connection between the
matrix representation and operator representation of the MG method.

Let H1
D(�)={u∈H1(�)|u=0 on �D�} be the Hilbert space associated with Equation (1), Tj

be the associated graded mesh, as defined in the previous subsection, Mj ∈H1
D(�) be the space

of piecewise linear functions on Tj , and A :H1
D(�)→(H1

D(�))′ be the corresponding differential
operator. The weak form for (1) is then

a(u,v)=(Au,v)=(−�u,v)=(∇u,∇v)=( f,v) ∀v∈H1
D(�)

where the pairing (·, ·) is the inner product in L2(�). Here, a(·, ·) is a continuous bilinear form
on H1

D(�)×H1
D(�) and by the Poincare inequality is also coercive. In addition, since the Tj are

nested,

M0⊂M1⊂·· ·⊂Mj ⊂·· ·⊂MJ ⊂H1
D(�)

Define Q j , Pj :H1
D(�)→Mj and A j :Mj →Mj as orthogonal projectors and the restriction of

A on Mj , respectively,

(Q ju,v j ) = (u,v j ), a(Pju,v j )=a(u,v j )

(Au j ,v j ) = (A ju j ,v j ) ∀u∈H1
D(�) ∀u j ,v j ∈Mj
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Let N j ={x j
i } be the set of nodal points in Tj and �k(x

j
i )=�i,k be the linear finite element nodal

basis function corresponding to node x j
k . Then, the j th level finite element discretization reads:

Find u j ∈Mj , such that

A ju j = f j (2)

where f j ∈Mj satisfies ( f j ,v j )=( f,v j ), ∀v j ∈Mj .
The MSC reduces an MG process to choosing a sequence of subspaces and corresponding

operators Bj :Mj →Mj approximating A−1
j , j =1, . . . , J . For example, in the MSC framework,

the standard MG backslash cycle for solving (2) is defined by the following subspace correction
scheme:

u j,l =u j,l−1+Bj ( f j −A ju j,l−1)

where the operators Bj :Mj →Mj , 0� j�J , are recursively defined as follows [24].
Algorithm 2.5
Let R j ≈ A−1

j , j >0, denote a local relaxation method. For j =0, define B0= A−1
0 . Assume that

Bj−1 :Mj−1→Mj−1 is defined. Then,

1. Fine grid smoothing: For u0j =0 and k=1,2, . . . ,n,

ukj =uk−1
j +R j ( f j −A ju

k−1
j ) (3)

2. Coarse grid correction: Find the corrector e j−1∈Mj−1 by the iterator Bj−1

e j−1= Bj−1Q j−1( f j −A ju
n
j )

Then, Bj f j =unj +e j−1.

Recursive application of Algorithm 2.5 results in an MG V -cycle for which the following identity
holds: I −Bv

J AJ =(I −BJ AJ )
∗(I −BJ AJ ) [24], where Bv

J is the iterator for the MG V -cycle.
Direct computation gives the following useful result:

unj = (I −R j A j )u
n−1
j +R j A ju j

= (I −R j A j )
2un−2

j −(I −R j A j )
2u j +u j

= −(I −R j A j )
nu j +u j

where u j is the finite element solution of (2) and unj is the approximation after n iterations of (3)
on the j th level. Let Tj =(I −(I −R j A j )

n)Pj be a linear operator and define T0= P0. We have
the following identity:

(I −BJ AJ )uJ = uJ −unJ −eJ−1=(I −TJ )uJ −eJ−1

= (I −BJ−1AJ−1PJ−1)(I −TJ )uJ

where, for BJ−1= A−1
J−1, this becomes a two-level method. Recursive application of this identity

then yields the error propagation operator of an MG V -cycle:

(I −BJ AJ )=(I −T0)(I −T1) · · · (I −TJ )
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To estimate the uniform convergence of the MG V -cycle, we thus need to show that

‖I −Bv
J AJ‖a =‖I −BJ AJ‖2a�c<1

where c is independent of J and ‖u‖2a =a(u,u)=(Au,u) on �.
Associated with each Tj , we introduce its symmetrization

T̄ j =Tj +T ∗
j −T ∗

j Tj

where T ∗
j is the adjoint operator of Tj with respect to the inner product a(·, ·). By a well-known

result found in [25], the following estimate holds:

‖I −BJ AJ‖2a = c0
1+c0

where

c0� sup
‖v‖a=1

J∑
j=1

a((T̄−1
j − I )(Pj −Pj−1)v,(Pj −Pj−1)v) (4)

Now, to prove the uniform convergence of the proposed MG scheme, we must derive a uniform
bound on the constant c0.

Although the above presentation is in terms of operators, the matrix representation of the
smoothing step (3) is often used in practice. By the matrix representation R of an operator R on

Mj , we here mean that with respect to the basis {�i }N j
i=1 of Mj ,

R(�k)=
N j∑
i=1

Ri,k�i

where Ri,k is the (i,k) component of the matrix R. Throughout the paper, we use boldfaced letters
to denote vectors and matrices.

Let AS =D−L−U be the stiffness matrix associated with the operator A j , where the matrix D
consists of only the diagonal entries of AS , while matrices −L and −U are the strictly lower and
upper triangular parts of AS , respectively. Denote by RM the corresponding matrix of the smoother
R j on the j th level. For example, RM =D−1 for the Jacobi method, and RM =(D−L)−1 for the
Gauss–Seidel method. In addition, let ul , ul−1, and f be the vectors containing the coordinates

of ulj , u
l−1
j , f j ∈Mj on the basis {�i }Ni

i=1, namely ulj =
∑N j

i=1u
l
i�i . Then, one smoothing step for

solving (2) on a single level j in terms of matrices reads

ul =ul−1+RM (Mf−ASul−1) (5)

where M is the mass matrix, and Mi,k =(�i ,�k).

Lemma 2.6
Let R be the matrix representation of the smoother R j in Equation (3). Then,

R=RMM

Hence,

R j (�k)=
N j∑
i=1

Ri,k�i =
N j∑
i=1

(RMM)i,k�i
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and

ul =ul−1+RM (Mf−ASul−1)=ul−1+R(f−M−1ASul−1)

Proof
Denote by A the matrix representation of the operator A. Note that

(A�i ,�k)=
(

N j∑
m=1

Am,i�m,�k

)
=(∇�k,∇�i )=(AS)k,i

indicates AS =MA. Moreover, in terms of matrices and vectors, Equation (3) also reads

N j∑
i=1

uli�i =
N j∑
i=1

ul−1
i �i +

N j∑
i=1

N j∑
k=1

Rk,i fi�k−
N j∑
i=1

N j∑
k=1

N j∑
m=1

Rm,kAk,iui�m

Then, the inner product with �n on both sides, 1�n�N j , leads to

Mul =Mul−1+MRf−MRAu

Multiplication by M−1 gives

ul =ul−1+R(f−Au)

Taking into account that Equations (3) and (5) represent the same iteration, we have

Rf=RMMf

Note the above equation holds for any f∈RN j . Therefore, R=RMM, which completes the proof.
�

3. UNIFORM CONVERGENCE OF THE MG METHOD ON GRADED MESHES

Next, we derive an estimate for the constant c0 in (4) of Section 2 and then proceed to establish
the main convergence theorem of the paper. We begin by proving several lemmas that are needed
in the convergence proof. For simplicity, we assume that there is only a single point S0∈ �̄, for
which the solution of Equation (1) has a singularity in H2(�), and that a nested sequence of
graded meshes has been constructed, as described in Definition 2.2. The same argument, however,
carries over to problems on domains with multiple singularities and also for similar refinement
strategies.

Denote by {T S0
i } all the initial triangles with the common vertex S0. Recall that the function �

in the weight equals the distance to S0 on these triangles. Based on the process in Definition 2.2,
after N refinements, the region ∪T S0

i is partitioned into N+1 sub-domains (layers) Dn , 0�n�N ,
whose sizes decrease by the factor � as they approach S0 (see Figure 2). In addition, �(x, y)=∼�n

on Dn for 0�n<N and �(x, y)�C�N on DN . Meanwhile, sub-triangles (nested meshes) are
generated in these layers Dn , 0�n�N , with corresponding mesh size of order O(�n2n−N ).
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Figure 2. Initial triangles with vertex S0 (left); layer D0 and D1 after one refinement (right), �=0.2.

Note that �=(∪Dn)∪(�\∪Dn). Let �Dn be the boundary of Dn . Then, we define a piecewise
constant function rp(x, y) on �̄ as follows.

rp(x, y)=
{

(1/2�)n on D̄n\�Dn−1 for 1<n�N

1 otherwise

where N = J is the number of refinements forTJ . Therefore, the restriction of rp on every T
S0
i ∩Dn

is a constant. Recall that �<1 is the parameter for �, such that �=2−1/�. Define the weighted
inner product with respect to rp:

(u,v)rp =(rpu,rpv)=
∫

�
r2puv

In addition, the above inner product induces the norm:

‖u‖rp =(u,u)
1/2
rp

Then, the following estimate holds.

Lemma 3.1

(u j −Pj−1u j ,u j −Pj−1u j )rp�
c1
N j

a(u j −Pj−1u j ,u j −Pj−1u j ) ∀u j ∈Mj

where N j =O(22 j ) is the dimension of Mj .

Proof
This lemma can be proved by the duality argument as follows.

Consider the following boundary value problem:

−�w = r2p(u j −Pj−1u j ) in �

w = 0 on �D�

�w/�n = 0 on �N�
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Then, since Pj−1w∈Mj−1, from the equation above, we have

(rp(u j −Pj−1u j ),rp(u j −Pj−1u j )) = (r2p(u j −Pj−1u j ),u j −Pj−1u j )

= (∇w,∇(u j −Pj−1u j ))

= (∇(w−Pj−1w),∇(u j −Pj−1u j ))

We note that �w is a piecewise linear function on the graded triangulation Tj that is derived after
j refinements. From the results of Theorem 2.3, we conclude

|w−Pj−1w|2H1(�)
� (C1/N j−1)‖�w‖2

K 0
�−1(�)

= (C1/N j−1)

(
j∑

n=0
‖�1−��w‖2L2(Dn)

+‖�1−��w‖2L2(�\∪Dn)

)

� (C/N j−1)

(
j∑

n=0
‖�n(1−�)�w‖2L2(Dn)

+‖�w‖2L2(�\∪Dn)

)

= (C/N j−1)

(
j∑

n=0
‖2n�n�w‖2L2(Dn)

+‖�w‖2L2(�\∪Dn)

)

= (C/N j−1)

(
j∑

n=0
‖r−1

p �w‖2L2(Dn)
+‖�w‖2L2(�\∪Dn)

)

= (C/N j−1)‖r−1
p �w‖2L2(�)

The inequalities above are based on the definition of �, rp, and related norms. Now, since N j =
O(N j−1), combining the results above, we have

‖u j −Pj−1u j‖2rp �
|w−Pj−1w|2

H1 |u j −Pj−1u j |2H1

‖(u j −Pj−1u j )‖2rp

= |w−Pj−1w|2
H1 |u j −Pj−1u j |2H1

‖r−1
p �w‖2

L2

� c1
N j

|u j −Pj−1u j |2H1 = c1
N j

a(u j −Pj−1u j ,u j −Pj−1u j )

which completes the proof. �

Recall that the matrix form RM and the matrix representation R of a smoother R j are different
from Lemma 2.6. Then, we have the following result regarding the smoother R̄ j = R j +Rt

j −
Rt
j A j R j on Mj , which is the symmetrization of R j , where Rt

j is the adjoint of R j with respect
to (·, ·).
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Lemma 3.2
For the subspace smoother R̄ j :Mj →Mj , we assume that there is a constant C>0 independent
of j , such that the corresponding matrix form R̄M satisfies

vTR̄Mv�CvTv ∀v∈RN j

on every level j , where N j is the dimension of the subspace Mj . Then, there exists c2>0, also
independent of the level j , such that the following estimate holds on each graded mesh Tj ,

c2
N j

(R̄ jv,v)�(R̄ jv, R̄ jv)rp ∀v∈Mj

Proof
For any v=∑i vi�i ∈Mj , from Lemma 2.6, we have

(R̄ jv,v)=
(∑

m
vm
∑
k

(R̄MM)k,m�k,
∑
i
vi�i

)
=vTMTR̄MMv

On the other hand,

(R̄ jv, R̄ jv)rp =
(∑

m
vm
∑
k

(R̄MM)k,m�k,
∑
l
vl
∑
i

(R̄MM)i,l�i

)

= vTMTR̄MM̃R̄MMv

where M̃ is a matrix satisfying (M̃)i,k =(rp�i ,rp�k). Note that both M and M̃ are symmetric
positive definite (SPD). Now, suppose supp(�i )∩Dn �=∅, 0�n� j . Then, on supp(�i ), the mesh
size is O(�n2n− j ) and rp =∼(1/2�)n , respectively, since supp(�i ) is covered by at most two adjacent
layers. Thus, all the non-zero elements in M̃ are positive and M̃=∼2−2 j =∼1/N j . To complete the
proof, it is sufficient to show that there exists C>0, such that

wTR̄1/2
M M̃R̄1/2

M w�(C/N j )wTw

where w= R̄1/2
M Mv.

From the condition on R̄M and the estimates on M̃, it follows that

wTR̄1/2
M M̃R̄1/2

M w=∼(1/N j )wTR̄Mw�(C/N j )wTw �

Remark 3.3
For our choice of graded meshes, the triangles remain shape-regular elements, that is, the minimum
angles of the triangles are bounded away from 0. Therefore, the stiffness matrix AS has a bounded
number of non-zero entries per row and each entry is of order O(1). Hence, the maximum
eigenvalue of AS is bounded. For this reason, standard smoothers (Richardson, weighted Jacobi,
Gauss–Seidel, etc.) satisfy Lemma 3.2, and (RM )i, j =O(1) as well, since they are all from part
of the matrix AS . Moreover, if RM is SPD and the spectral radius �(RMAS)�	, for 0<	<1,
then based on Lemma 2.6,

a(R j A jv,v) = (A j R j A jv,v)

= vTASRMASv

� 	a(v,v)
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The last inequality follows from the similarity of the matrix A1/2
S RMA1/2

S and the matrix RMAS .
Note that the above inequality implies the spectral radius of R j A j�	, since R j A j is symmetric
with respect to a(·, ·).

We then define the following operators for the MG V -cycle. Recall Tj from Section 2 and
let R j denote a subspace smoother satisfying Lemma 3.2. Recall the symmetrization R̄ j of R j ,
and assume the spectral radius �(R̄ j A j )�	 for 0<	<1. Note that Rt

j is the adjoint of R j with
respect to (·, ·) and T ∗

j is the adjoint of Tj with respect to a(·, ·). With n smoothing steps, where
R j and Rt

j are applied alternatingly, the operator G j and G∗
j are defined as follows:

G j = I −R j A j , G∗
j = I −Rt

j A j

With this choice

Tj =
{
Pj −(G∗

j G j )
n/2Pj for even n

Pj −G j (G
∗
j G j )

(n−1)/2Pj for odd n

Therefore, if we define

G j,n =
{
G∗

j G j for even n

G jG
∗
j for odd n

since P2
j = Pj ,

T̄ j =Tj +T ∗
j −T ∗

j Tj =(I −Gn
j,n)Pj

Note that T̄ j is invertible on Mj , and hence T̄−1
j exists.

The main result concerning the uniform convergence of the MG V -cycle for our model problem
is summarized in the following theorem.

Theorem 3.4
On every triangulation Tj , suppose that the smoother on each subspace Mj satisfies Lemma 3.2.
Then, following the algorithm described above, we have

‖I −BJ AJ‖2a = c0
1+c0

� c1
c1+c2n

where c1 and c2 are constants from Lemmas 3.1 and 3.2.

Proof
Recall (4) from Section 2. To estimate the constant c0, we first consider the decomposition v=∑

j v j for any v∈MJ with

v j =(Pj −Pj−1)v∈Mj

Then, Lemma 3.1 implies

N j (v j ,v j )rp�c1a(v j ,v j )
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Estimating the identity of Xu and Zikatanov [25], we have

a(T̄−1
j (I − T̄ j )v j ,v j ) = a((I −Gn

j,n)
−1Gn

j,nv j ,v j )

= (R̄−1
j R̄ j A j (I −Gn

j,n)
−1Gn

j,nv j ,v j )

= (R̄−1
j (I −G j,n)(I −Gn

j,n)
−1Gn

j,nv j ,v j )

Note that Gk
j,n , k�n, is in fact a polynomial of R̄ j A j . Therefore, R̄

−1/2
j (I −G j,n)R̄

1/2
j , R̄−1/2

j Gn
j,n

R̄1/2, and R̄−1/2
j (I −Gn

j,n)R̄
1/2
j are all polynomials of R̄1/2

j A j R̄
1/2
j , where R̄−1/2

j (I −Gn
j,n)R̄

1/2
j =

(R̄−1/2
j (I −Gn

j,n)
−1 R̄1/2

j )−1. Thus, it can be seen that R̄−1/2
j (I −G j,n)R̄

1/2
j , R̄−1/2

j Gn
j,n R̄

1/2, and

R̄−1/2
j (I −Gn

j,n)
−1 R̄1/2

j commute with each other; hence, R̄−1/2
j (I −G j,n)(I −Gn

j,n)
−1Gn

j,n R̄
1/2

is symmetric with respect to (·, ·).
Then, based on the above argument, defining w j = R̄−1/2

j v j , we have

a(T̄−1
j (I − T̄ j )v j ,v j ) = (R̄−1/2

j (I −G j,n)(I −Gn
j,n)

−1Gn
j,n R̄

1/2w j ,w j )

� max
t∈[0,1]

(1− t)(1− tn)−1tn(R̄−1
j v j ,v j )

� 1

n
(R̄−1

j v j ,v j )�
N j

c2n
(v j ,v j )rp

where the last inequality is from Lemma 3.2. Moreover,

J∑
j=0

a(T̄−1
j (I − T̄ j )v j ,v j )�

J∑
j=1

N j

c2n
(v j ,v j )rp�

J∑
j=0

c1
c2n

a(v j ,v j )= c1
c2n

a(v,v)

Therefore, c0�c1/(c2n) and consequently, the MSC yields the following convergence estimate for
the MG V -cycle:

‖I −BJ AJ‖2a = c0
1+c0

� c1
c1+c2n

which completes the proof. �

4. NUMERICAL ILLUSTRATION

This section contains numerical results for the proposed MG V -cycle applied to the 2D Poisson
equation with a single corner-like singularity. The model test problem we consider here is given
by

−�u = f in �

u = 0 on ��
(6)

where the singularity occurs at the tip of the crack {(x, y),0�x�0.5, y=0.5} for �=(0,1)×(0,1)
as in Figure 3.
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The MG scheme used to solve (6) is a standard MG V -cycle with linear interpolation. The
sequence of coarse-level problems defining the MG hierarchy is obtained by re-discretizing (6)
on the nested meshes constructed using the GMR strategy described in Section 2. The reported
results are for V (1,1)-cycles and Gauss–Seidel (GS) as a smoother. The asymptotic convergence
factors are computed using 100 V (1,1)-cycles applied to the homogeneous problem starting with
an O(1) random initial approximation.

The asymptotic convergence factors reported in Table I clearly demonstrate our theoretical
estimates in that they are independent of the number of refinement levels. To obtain a more complete
picture of the overall effectiveness of our MG solver, we examine also storage and work-per-cycle
measures. These are usually expressed in terms of operator complexity, defined as the number of
non-zero entries stored in the operators on all levels divided by the number of non-zero entries
in the finest-level matrix, and grid complexity defined as the sum of the dimensions of operators
over all levels divided by the dimension of the finest-level operator. The grid and, especially, the
operator complexities can be viewed as proportionality constants that indicate how expensive the
entire V -cycle is compared with performing only the finest-level relaxations of the V -cycle. For
our test problem, the grid and operator complexities were 1.2 and 1.3, respectively, independent
of the number of levels. Considering the low grid and operator complexities the performance of
the resulting MG solver applied to problem (6) is comparable to that of standard geometric MG
applied to the Poisson equation with full regularity, i.e. without corner-like singularities; for the
Poisson equation discretized on uniformly refined grids, standard MG with a GS smoother and
linear interpolation yields �MG≈0.35.

Figure 3. Crack: initial triangulation (left) and the triangulation after one refinement (right), �=0.2.

Table I. Asymptotic convergence factors (�MG) for the MG V (1,1)-cycle applied to
problem (6) with Gauss–Seidel smoother.

levels 2 3 4 5 6

�MG (GS) 0.40 0.53 0.56 0.53 0.50
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