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A B S T R A C T

In this paper, we consider an adaptive finite element method for solving elliptic equations with
line Dirac delta functions as the source term. Instead of using a local 𝐻−1 local indicator,
or regularizing the singular source term and using the classical residual-based a posteriori
error estimator, we propose a novel a posteriori estimator based on an equivalent transmission
problem. This equivalent problem is defined in the same domain as the original problem
but features a zero source term and nonzero flux jumps along the line cracks, leading to
a more regular solution. The a posteriori error estimator relies on meshes that conform to
the line cracks, and its edge jump residual essentially incorporates the flux jumps of the
transmission problem on these cracks. The proposed error estimator is proven to be both
reliable and efficient. We also introduce an adaptive finite element algorithm based on this
error estimator and the bisection refinement method. Numerical tests demonstrate that quasi-
optimal convergence rates are achieved for both low-order and high-order approximations, with
the associated adaptive meshes primarily refined at a finite number of singular points in the
domain.

1. Introduction

We are interested in the adaptive finite element method for the elliptic boundary value problem

− 𝛥𝑢 =
𝑁
∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙 in 𝛺 , 𝑢 = 0 on 𝜕 𝛺 , (1.1)

where 𝛺 ⊂ R2 is a polygonal domain, 𝛾𝑙, 𝑙 = 1,… , 𝑁 are line cracks strictly contained in 𝛺, which may intersect at certain points,
as illustrated in Fig. 1(a), 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙) with 𝛽𝑙 ≥ 0, and 𝑔𝑙𝛿𝛾𝑙 in the source term ∑𝑁

𝑙=1 𝑔𝑙𝛿𝛾𝑙 is a line Dirac measure on a line crack 𝛾𝑙,
satisfying

⟨𝑔𝑙𝛿𝛾𝑙 , 𝑣⟩ = ∫𝛾𝑙
𝑔𝑙(𝑠)𝑣(𝑠)𝑑 𝑠, ∀ 𝑣|𝛾𝑙 ∈ 𝐿2(𝛾𝑙). (1.2)

Although 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙) ⊂ 𝐿2(𝛾𝑙), the line Dirac measure ∑𝑁
𝑙=1 𝑔𝑙𝛿𝛾 ∉ 𝐿2(𝛺).

The elliptic problem (1.1) is commonly used to describe various phenomena such as monophasic flows in porous media, tissue
perfusion, and drug delivery [1]. It also has applications in elliptic optimal control problems [2]. While the solution of the elliptic
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problem (1.1) is generally smooth in most of the domain, it becomes singular near the line cracks 𝛾𝑙 and the vertices of the
domain [3]. The corner singularity has been well-understood in the literature [4–8] and we will focus on the regularity of the
solution near line cracks 𝛾𝑙. The smoothness of the source term can be obtained through the duality argument [9]. Therefore, the
regularity of the solution to problem (1.1) can be derived using the standard elliptic regularity theory [10,11].

Finite element methods for elliptic equations with singular source terms have a long history dating back to the 1970s. However,
he primary focus was on point Dirac delta sources [12–18]. More recently, there has been increased attention on singular sources
n complex geometries [1–3,19–22], including one-dimensional (1D) crack sources. In [19], the finite element method was studied

for problems involving a 2 closed crack strictly contained in the domain, and an adaptive finite element method was proposed
to improve the convergence rate. In [2], as a controlled equation in an optimal control problem, the elliptic problem (1.1) with a
ingle 2 curve crack was solved using the linear finite element method.

The standard finite element method applied to problem (1.1) can only achieve a convergence rate of ℎ
1
2 on quasi-uniform meshes

ue to the lack of regularity. To improve the convergence rate, Li et al. [3] studied the regularity of the solution in a weighted Sobolev
space and developed an optimal graded finite element algorithm that approximates the singular solution at an optimal convergence
rate on graded meshes. These meshes are densely refined only at the endpoints of the line cracks. However, as the graded finite
element applies to (1.1), the grading parameter utilized to generate the graded meshes depends on the smoothness of the functions
𝑔𝑙. Determining this parameter can be difficult and may vary from case to case for different functions 𝑔𝑙.

Adaptive finite element methods (AFEMs) provide an alternative approach to obtain optimal finite element solutions for problem
(1.1), as they are effective numerical techniques for problems involving singularities. AFEMs usually consist of four steps (see
.g., [23,24]),

SOLVE → ESTIMATE → MARK → REFINE,

which generates a sequence of meshes, on which the finite element approximations converge to the solution of the target problem.
AFEMs rely on a crucial component: the a posteriori error estimator. This estimator is a computable quantity that depends on both the
finite element approximation and known data. It provides information about the size and distribution of the error in the numerical
approximation, which can then be used to guide mesh adaptation and as an error estimate. Results on a posteriori error estimates of
finite element analysis for second-order elliptic problems with 𝐿2 source terms can be found in [25,26] and the references therein.

Elliptic problems with point Dirac delta source terms have been extensively studied using AFEMs, with residual-based a posteriori
rror estimators widely employed to guide mesh adaptation and estimate the finite element solution error [23,26–29]. Since the

Dirac delta source term has a singularity, it is typically regularized to an 𝐿2(𝛺) or 𝐿𝑝(𝛺) function with 1 < 𝑝 < ∞ by projecting
the source term to a polynomial space. As a result, the standard residual-based a posteriori error estimator for the general Poisson
problems [25,30] can be applied.

For elliptic problems with line Dirac delta source terms, a local data indicator was introduced in [31]. However, it is not easy to
ompute in practice since it involves a local 𝐻−1 norm, and the evaluation of the local data indicator for high-order approximations
emains an open issue. More recently, regularization techniques have been introduced in studies such as [20,32], which involve

projecting the source term to an 𝐿2(𝛺) or 𝐿𝑝(𝛺) function. This allows for the use of standard a posteriori error estimators. The
regularization techniques work well for elliptic problems with closed smooth cracks. However, if the cracks are segments, they
cannot well reflect the singularity of the solution at the crack endpoints, see Example 4.3.

The solution of (1.1) is continuous throughout the entire domain 𝛺, but its normal derivative across each line crack shows jumps.
Therefore, we resort to investigating an equivalent elliptic problem with a zero source term and nonzero flux jumps on line cracks
𝛾𝑙. More specifically, the coefficients 𝑔𝑙 in the line Dirac source term of (1.1) are transferred to the flux jumps on line cracks of the
new problem, which is known as the transmission problem [8]. The transmission problem is defined in the same domain as the
original problem, except on the line cracks, along which features a zero source term and nonzero flux jumps. The solution of the
lliptic problem (1.1) solves the transmission problem, while the solution of the transmission problem is shown to be more regular,

which implies that the finite element solution for problem (1.1) would have a higher convergence rate if the mesh conforms to the
line cracks. We also investigate the finite element approximations on quasi-uniform meshes conforming to the line cracks and show
the error estimates of the finite element approximations. The convergence rates vary depending on the smoothness of the extended
functions of 𝑔𝑙.

Our residual-based a posteriori error estimator is proposed based on the transmission problem. First, we triangulate the mesh
conforming to line cracks 𝛾𝑙, where 𝛾𝑙 is the union of some edges in the triangulation. Second, the error estimator consists of two
types of residuals: element residuals with zero source and edge residuals based on the difference between the normal derivative
jumps of the FEM solution and the flux jumps (equal to 𝑔𝑙) on line cracks. We derive the reliability and efficiency of the proposed a
osteriori error estimator with new techniques for handling the edge residual. Based on the derived error estimator and the bisection
esh refinement method, we propose an adaptive finite element algorithm. Quasi-optimal convergence rates can be numerically

chieved for finite element approximations, and the adaptive meshes are primarily refined near the endpoints of line cracks and the
ingular corners of the domain.

Compared to existing numerical methods, the proposed approach offers several advantages. Firstly, it can effectively capture
the most singular part of the solution in the domain, primarily refining the mesh near the endpoints of line cracks and the singular
corners of the domain. Secondly, the proposed method is independent of the smoothness of the function 𝑔𝑙, whereas the graded finite
element method require knowledge of the smoothness of 𝑔𝑙 to determine the grading parameter. More specifically, the contributions,
innovations, and significance of this work include:
2 



H. Cao et al.

t
d

i
d

w

Journal of Computational and Applied Mathematics 462 (2025) 116466 
Fig. 1. (a) Domain 𝛺 containing four line cracks 𝛾1 , 𝛾2 , 𝛾3 and 𝛾4. (b) 𝛺 is decomposed into five sub-domains {𝛺′
𝑗}

5
𝑗=1 by 𝛾𝑖 , 𝑖 = 1, 2, 3, 4.

• To construct a posteriori error estimator for elliptic boundary value problem (1.1) with a Dirac source term on cracks, we
resort to an equivalent transmission problem, which features a zero source term, a zero boundary condition, and an interface
condition on the cracks.

• We study the regularity of the elliptic boundary value problem (1.1) in domain 𝛺 and the set 𝛺⧵∪𝑁𝑙=1𝛾𝑙, respectively. We show
the regularity of the solution in the set 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙 through the transmission problem.

• Based on the a posteriori error estimator and the bisection refinement technique, we propose an adaptive finite element
algorithm.

• We rigorously derive the reliability and efficiency of the proposed a posteriori error estimator, with an emphasis on handling
the jump of the normal derivatives on the cracks.

• We conduct several numerical examples to verify the performance of the proposed method. Specifically, we compare the a
posteriori error estimator with another a posteriori error estimator based on the regularization technique, demonstrating that
the proposed estimator can effectively capture the singularity of the solution near the endpoints of the cracks.

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness and global regularity of problem (1.1) in
the whole domain. In addition, we introduce a transmission problem, and investigate its well-posedness, regularity, and relationship
to problem (1.1). In Section 3, we propose a novel residual-based a posteriori error estimator, demonstrate its reliability and
efficiency, and present our adaptive finite element algorithm. In Section 4, we present various numerical test results to validate our
heoretical findings. Throughout the paper, we use 𝐶 > 0 to denote a generic constant that may vary depending on the computational
omain but not on the functions involved and mesh parameters.

2. Well-posedness and regularities

Denote by 𝐻𝑚(𝛺), 𝑚 ∈ Z≥0, the Sobolev space that consists of functions whose 𝑖th (0 ≤ 𝑖 ≤ 𝑚) derivatives are square integrable.
Denote by 𝐻1

0 (𝛺) ⊂ 𝐻1(𝛺) the subspace consisting of functions with zero trace on the boundary 𝜕 𝛺. For 𝑠 > 0, let 𝑠 = 𝑚+𝑡, 0 < 𝑡 < 1.
Recall that for 𝐷 ⊆ R𝑑 for 𝑑 = 1, 2, the fractional order Sobolev space 𝐻𝑠(𝐷) consists of distributions 𝑣 in 𝐷 satisfying

‖𝑣‖2𝐻𝑠(𝐷) ∶= ‖𝑣‖2𝐻𝑚(𝐷) +
∑

|𝛼|=𝑚
∫𝐷 ∫𝐷

|𝜕𝛼𝑣(𝑥) − 𝜕𝛼𝑣(𝑦)|2
|𝑥 − 𝑦|𝑑+2𝑡

𝑑 𝑥𝑑 𝑦 <∞,

where 𝛼 = (𝛼1,… , 𝛼𝑑 ) ∈ Z𝑑≥0 is a multi-index such that 𝜕𝛼 = 𝜕𝛼1𝑥1 … 𝜕𝛼𝑑𝑥𝑑 and |𝛼| =
∑𝑑
𝑖=1 𝛼𝑖. We denote by 𝐻𝑠

0 (𝐷) the closure of 𝐶∞
0 (𝐷)

n 𝐻𝑠(𝐷), and 𝐻−𝑠(𝐷) the dual space of 𝐻𝑠
0 (𝐷). Let 𝛾 ⊂ R1 be a smooth curve with two endpoints and 𝐻̃𝑠(𝛾) be the space of all 𝑣

efined in 𝛾 such that 𝑣̃ ∈ 𝐻𝑠(R1), where 𝑣̃ is the extension of 𝑣 by zero outside 𝛾.

2.1. Trace estimates

A sketch drawing of the domain 𝛺 with several line cracks is provided in Fig. 1(a). To obtain the trace estimates on line cracks,
e first introduce the trace estimate on a general polygonal domain with no line cracks.

Lemma 2.1 ([33,34]). Let 𝛺′ be a polygonal domain with no line crack, then the trace operator
𝜗 ∶ 𝐻𝑠(𝛺′) → 𝐻𝑠− 1

2 (𝜕 𝛺′)

is bounded for 1
2 < 𝑠 < 3

2 .
3 
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Lemma 2.2. For the domain 𝛺 with line segment cracks 𝛾𝑙, 𝑙 = 1,… , 𝑁 , the trace operator
𝜗 ∶ 𝐻𝑠(𝛺) → 𝐻𝑠− 1

2 (𝛾𝑙),

is bounded for 1
2 < 𝑠 < 3

2 .

Proof. By appropriately extending line cracks 𝛾𝑙, 𝑙 = 1,… , 𝑁 , to the boundary of the domain 𝛺 or to another line crack and denoting
the extended line cracks by 𝛾 ′𝑖 , 𝑖 = 1,… , 𝑁 ′, we can partition the domain 𝛺 into 𝑀 polygonal subdomains 𝛺′

𝑗 , 1 ≤ 𝑗 ≤𝑀 , where 𝛾 ′𝑙
is shared by neighboring subdomains 𝛺′

𝑖 and 𝛺′
𝑗 (see Fig. 1(b)). For any 𝑣 ∈ 𝐻𝑠(𝛺), it holds

𝑣 ∈ 𝐻𝑠(𝛺′
𝑗 ), 𝑗 = 1,… , 𝑀 .

By Lemma 2.1, if 1
2 < 𝑠 < 3

2 , it follows for 𝑙 = 1,… , 𝑁 ,

‖𝑣‖
𝐻𝑠− 1

2 (𝛾𝑙 )
≤ ‖𝑣‖

𝐻𝑠− 1
2 (𝛾′𝑙 )

≤ 𝐶‖𝑣‖𝐻𝑠(∪𝑀𝑗=1𝛺
′
𝑗 )
= 𝐶‖𝑣‖𝐻𝑠(𝛺).

Therefore, the conclusion holds. □

2.2. Well-posedness and regularity in 𝛺

To investigate the well-posedness and regularity of elliptic problem (1.1), it is necessary to study the line Dirac measure ∑𝑁
𝑙=1 𝑔𝑙𝛿𝛾𝑙 .

Lemma 2.3. For 𝜖 > 0, the line Dirac measure ∑𝑁
𝑙=1 𝑔𝑙𝛿𝛾𝑙 ∈ 𝐻− 1

2−𝜖(𝛺) satisfying
‖

‖

‖

‖

‖

‖

𝑁
∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙

‖

‖

‖

‖

‖

‖𝐻− 1
2 −𝜖 (𝛺)

≤ 𝐶
𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐿2(𝛾𝑙 ).

Proof. For 𝑣 ∈ 𝐻
1
2+𝜖(𝛺), by Hölder’s inequality and Lemma 2.2, we have for 𝑙 = 1,… , 𝑁 ,

⟨𝑔𝑙𝛿𝛾𝑙 , 𝑣⟩ =∫𝛾𝑙
𝑔𝑙(𝑠)𝑣(𝑠)𝑑 𝑠 ≤ 𝐶‖𝑔𝑙‖𝐿2(𝛾𝑙 )‖𝑣‖𝐿2(𝛾𝑙 ) ≤ 𝐶‖𝑔𝑙‖𝐿2(𝛾𝑙 )‖𝑣‖𝐻𝜖 (𝛾𝑙) ≤ 𝐶‖𝑔𝑙‖𝐿2(𝛾𝑙 )‖𝑣‖𝐻

1
2 +𝜖 (𝛺)

.

Therefore, by the duality argument (e.g., [9])
‖

‖

‖

‖

‖

‖

𝑁
∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙

‖

‖

‖

‖

‖

‖𝐻− 1
2 −𝜖 (𝛺)

∶= sup
{⟨ 𝑁

∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙 , 𝑣

⟩

∶ ‖𝑣‖
𝐻

1
2 +𝜖

= 1
}

≤ 𝐶
𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐿2(𝛾𝑙 ). □

Remark 2.4. Generally, for a function in 𝐻
1
2 (𝛺), its trace on 𝛾𝑙 does not belong to 𝐿2(𝛾𝑙). Therefore, 𝜖 = 0 does not hold in

Lemma 2.3.

Remark 2.5. The smoothness of 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙) with different 𝛽𝑙 ≥ 0 cannot affect the smoothness of ∑𝑁
𝑙=1 𝑔𝑙𝛿𝛾𝑙 in 𝛺, except in the

subset 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙, for which we will investigate in the next section.

By Lemma 2.3, the problem (1.1) is well-posed. The variational formulation for problem (1.1) is to find 𝑢 ∈ 𝐻1
0 (𝛺), such that

𝑎(𝑢, 𝑣) ∶= ∫𝛺
∇𝑢 ⋅ ∇𝑣𝑑 𝑥 =

⟨ 𝑁
∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙 , 𝑣

⟩

, ∀ 𝑣 ∈ 𝐻1
0 (𝛺). (2.1)

In addition, the following global regularity estimate holds.

Lemma 2.6. For 𝜖 > 0, the elliptic boundary value problem (1.1) admits a unique solution 𝑢 ∈ 𝐻
3
2−𝜖(𝛺) ∩𝐻1

0 (𝛺) satisfying

‖𝑢‖
𝐻

3
2 −𝜖 (𝛺)

≤ 𝐶
𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐿2(𝛾𝑙 ). (2.2)

Proof. The standard elliptic theory gives

‖𝑢‖
𝐻

3
2 −𝜖 (𝛺)

≤ 𝐶
‖

‖

‖

‖

‖

‖

𝑁
∑

𝑙=1
𝑔𝑙𝛿𝛾𝑙

‖

‖

‖

‖

‖

‖𝐻− 1
2 −𝜖 (𝛺)

≤ 𝐶
𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐿2(𝛾𝑙 ).
4 
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Remark 2.7. The elliptic problem (1.1) is linear, and its solution can be obtained by summing the solutions of the following
roblems with one line Dirac source term for 𝑙 = 1,… , 𝑁 ,

− 𝛥𝑢𝑙 = 𝑔𝑙𝛿𝛾𝑙 in 𝛺 , 𝑢𝑙 = 0 on 𝜕 𝛺 . (2.3)

By the superposition principle, 𝑢 = ∑𝑁
𝑙=1 𝑢𝑙 . The regularity estimate in Lemma 2.6 is then obtained by the summation of the regularity

stimate ‖𝑢𝑙‖
𝐻

3
2 −𝜖 (𝛺)

≤ 𝐶𝑙‖𝑔𝑙‖𝐿2(𝛾𝑙) for (2.3) upon using the triangle inequality.

By Lemma 2.6 and the Sobolev imbedding Theorem [34], we have the following result.

Corollary 2.1. For 𝜖 > 0, the solution 𝑢 of problem (1.1) is Hölder continuous 𝑢 ∈ 0,1∕2−𝜖(𝛺). In particular, the solution 𝑢 ∈ 0(𝛺).

Here, Corollary 2.1 implies that the solution of problem (1.1) is continuous across line cracks 𝛾𝑙, 𝑙 = 1,… , 𝑁 . It is known that
for the general elliptic boundary value problem with an 𝐿2(𝛺) source term, the jump of the normal derivative of the solution,
also known as flux jumps, on the line cracks vanishes. However, it becomes significant if the problem is subject to line Dirac delta
functions. Therefore, it is necessary to study the flux jumps on the line cracks to develop efficient numerical schemes. To this end,
we introduce the transmission problem of (1.1) to investigate the normal derivatives of the solution across the line cracks.

2.3. Transmission problem

Let 𝐧± be the outward unit normal of the region on each side of the crack 𝛾𝑙. For a function 𝑣, we denote 𝑣± (resp. 𝜕𝐧±𝑣±) the
races of 𝑣 (resp. ∇𝑣) evaluated on the crack 𝛾𝑙 from the region on each side. We define the jump of 𝑣 across 𝛾𝑙 by [𝑣] = 𝑣+ − 𝑣− and

the jump of its normal derivatives (or flux jumps) on 𝛾𝑙 by [𝜕𝐧𝑣] = 𝐧+ ⋅ ∇𝑣+ + 𝐧− ⋅ ∇𝑣−.
For the elliptic problem (1.1), we introduce the following interface problem,

−𝛥𝑤 = 0 in 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙 , (2.4a)

[𝑤] = 0 on 𝛾𝑙 , 𝑙 = 1,… , 𝑁 , (2.4b)

[𝜕𝐧𝑤] = 𝑔𝑙 on 𝛾𝑙 , 𝑙 = 1,… , 𝑁 , (2.4c)

𝑤 = 0 on 𝜕 𝛺 , (2.4d)

which is known as the transmission problem of the elliptic problem (1.1) [8]. Compared with the original elliptic problem (1.1), the
cracks 𝛾𝑙, 𝑙 = 1,… , 𝑁 are treated as the interfaces. Therefore, the jump conditions ((2.4)b) and ((2.4)c) are treated as the interface
conditions.

To investigate the solution the of the transmission problem (2.4), we define a space

𝑉 =
{

𝑣 ∈ 𝐻1(𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙) ∶ 𝑣|𝜕 𝛺 = 0, [𝑣]|𝛾𝑙 = 0, 𝑙 = 1,… , 𝑁
}

,

with the associated norm on 𝑉 given by

‖𝑣‖𝑉 ∶= ‖𝑣‖𝐻1(𝛺⧵∪𝑁𝑙=1𝛾𝑙 )
, ∀𝑣 ∈ 𝑉 .

Moreover, if 𝑣 ∈ 𝐻1(𝛺), then it follows 𝑣 ∈ 𝑉 and ‖𝑣‖𝑉 = ‖𝑣‖𝐻1(𝛺).

Lemma 2.8. The variational formulation for the transmission problem (2.4) is to find 𝑤 ∈ 𝑉 such that

∫𝛺⧵∪𝑁𝑙=1𝛾𝑙
∇𝑤 ⋅ ∇𝑣𝑑 𝑥 =

𝑁
∑

𝑙=1
∫𝛾𝑙

𝑔𝑙𝑣𝑑 𝑠, ∀𝑣 ∈ 𝐻1
0 (𝛺). (2.5)

Moreover, it admits a unique solution 𝑤 ∈ 𝑉 satisfying

𝑤 = 𝑢|𝛺⧵∪𝑁𝑙=1𝛾𝑙
, (2.6)

where 𝑢 is the solution of the elliptic problem (1.1).

Proof. By multiplying a test function 𝑣 ∈ 𝐻1
0 (𝛺) on both sides of ((2.4)a), and applying the Green’s formula together with the

interface and boundary conditions ((2.4)b–d), it follows

−∫𝛺⧵∪𝑁𝑙=1𝛾𝑙
𝛥𝑤𝑣𝑑 𝑥 =∫𝛺⧵∪𝑁𝑙=1𝛾𝑙

∇𝑤 ⋅ ∇𝑣𝑑 𝑥 −
𝑁
∑

𝑙=1
∫𝛾𝑙

[𝜕𝐧𝑤]𝑣𝑑 𝑠 = 0, (2.7)

which gives the variational formulation (2.5).
Since the measure |𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙| = |𝛺|, then the variational formulation (2.5) is equivalent to (2.1).
Therefore, the well-posedness of (2.5) or (2.4) follows from that of (2.1) or (1.1). □
5 
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Fig. 2. The extension of the line crack 𝛾1.

Lemma 2.8 implies that the transmission problem (2.4), admits a unique solution in 𝑉 . Based on the jump condition ((2.4)b),
we can extend it from 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙 to the whole domain 𝛺 by taking

𝑤̄ ∶=

{

𝑤 in 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙 ,

𝑤+(= 𝑤−) on 𝛾𝑙 , 𝑙 = 1,… , 𝑁 . (2.8)

Corollary 2.1 and Lemma 2.8 further imply that

𝑤̄ ∈ 0(𝛺) ∩𝐻1
0 (𝛺), (2.9)

thus

‖𝑤̄‖𝐻1(𝛺) = ‖𝑤̄‖𝑉 = ‖𝑤‖𝑉 . (2.10)

Therefore, (2.5) is equivalent to the variational formulation

𝑎(𝑤̄, 𝑣) =
𝑁
∑

𝑙=1
∫𝛾𝑙

𝑔𝑙𝑣𝑑 𝑠, 𝑣 ∈ 𝐻1
0 (𝛺), (2.11)

where the bilinear form 𝑎(⋅, ⋅) is defined in (2.1).

2.4. Regularity in 𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙

To investigate the regularity of the transmission problem (2.4), we first consider the following interface problem,

−𝛥𝑧 = 0 in 𝛺 ⧵ 𝛤0, (2.12a)

[𝑧] = 0 on 𝛤0, (2.12b)

[𝜕𝐧𝑧] = 𝑔 on 𝛤0, (2.12c)

𝑧 = 0 on 𝜕 𝛺 , (2.12d)

where 𝛤0 is a closed sufficiently smooth curve strictly contained in 𝛺, and 𝑔 ∈ 𝐻𝛽 (𝛤0) with 𝛽 ≥ 0. For problem (2.12), we recall the
following result from [10,35].
6 
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Lemma 2.9. Let 𝑧 be the solution of the problem (2.12). Then it follows
‖𝑧‖

𝐻min{1+𝛼 ,𝛽+ 3
2 }(𝛺⧵𝛤0)

≤ 𝐶‖𝑔‖𝐻𝛽 (𝛤0), (2.13)

where 𝛼 < 𝜋
𝜔 with 𝜔 being the largest interior angle of the polygonal domain 𝛺.

Next, we introduce the following result from [10, Theorem 1.2.15 and Theorem 1.2.16].

Lemma 2.10. For a point 𝑥 ∈ 𝛾𝑙, let 𝜌𝑙(𝑥) be multiplication of the distances of 𝑥 to the endpoints of 𝛾𝑙. Then
𝑣
𝜌𝑠𝑙

∈ 𝐿2(𝛾𝑙), if 𝑣 ∈ 𝐻𝑠(𝛾𝑙) and 𝑠 ∈ (0, 1
2
);

𝐷𝜈𝑣
𝜌𝑠−|𝜈|𝑙

∈ 𝐿2(𝛺), if 𝑣 ∈ 𝐻𝑠
0 (𝛺), |𝜈| ≤ 𝑠 and 𝑠 − 1

2
is not an integer.

Recall the definition of the fractional space 𝐻̃𝑠(𝛾𝑙) given at the beginning of Section 2. Then we have the following result.

Lemma 2.11. For any 𝜖 > 0, the following statements hold,

(i) if 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙), it follows 𝑔𝑙 ∈ 𝐻̃min{𝛽𝑙 ,
1
2−𝜖}(𝛾𝑙);

(ii) if 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙) and 𝛽𝑙 +

1
2 > 0 is not an integer, it follows 𝑔𝑙 ∈ 𝐻̃𝛽𝑙 (𝛾𝑙);

(iii) if 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙) and 𝛽𝑙 +

1
2 > 0 is an integer, it follows 𝑔𝑙 ∈ 𝐻̃𝛽𝑙−𝜖(𝛾𝑙).

Proof. The proofs of (i) and (ii) follow from Lemma 2.10. For (iii), we have 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙) ⊂ 𝐻𝛽𝑙−𝜖

0 (𝛾𝑙), then the conclusion holds by
pplying Lemma 2.10 and the definition of 𝐻̃𝑠(𝛾𝑙). □

Theorem 2.12. Recall that 𝛽 = min1≤𝑙≤𝑁{𝛽𝑙} and 𝛼 < 𝜋
𝜔 with 𝜔 being the largest interior angle of 𝛺. For any 𝜖 > 0, let 𝑤 be the solution

of the transmission problem (2.4). If 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙), 𝑙 = 1,… , 𝑁 , then

‖𝑤‖
𝐻min{𝛼+1,𝛽+ 3

2 ,2−𝜖}(𝛺⧵∪𝑁𝑙=1𝛾𝑙 )
≤ 𝐶

𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐻𝛽𝑙 (𝛾𝑙 )

. (2.14)

Further, if 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙), 𝑙 = 1,… , 𝑁 , then

‖𝑤‖
𝐻min{𝛼+1,𝛽+ 3

2 }(𝛺⧵∪𝑁𝑙=1𝛾𝑙 )
≤𝐶

𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐻𝛽𝑙 (𝛾𝑙 )

, if 𝛽 + 1
2 > 0 is not an integer;

‖𝑤‖
𝐻min{𝛼+1,𝛽+ 3

2 −𝜖}(𝛺⧵∪𝑁𝑙=1𝛾𝑙 )
≤𝐶

𝑁
∑

𝑙=1
‖𝑔𝑙‖𝐻𝛽𝑙 (𝛾𝑙 )

, if 𝛽 + 1
2 > 0 is an integer.

(2.15)

Proof. We begin by considering the case with only one line crack 𝛾1, as illustrated in Fig. 2(a). We extend 𝛾1 to 𝛾 ′1, which intersects
the boundary 𝜕 𝛺 at two points. Consequently, 𝛺 is divided into two open subdomains, 𝛺− and 𝛺+ (see Fig. 2(b)). Then we prove
hat the results hold in 𝛺− and 𝛺+.

In 𝛺+, we extend the line crack 𝛾1 to form a closed 2 curve 𝛾̃+1 , further partitioning 𝛺 into two subdomains, 𝛺0 and 𝛺1, as
depicted in Fig. 2(c). Correspondingly, we extend 𝑔1 defined on 𝛾1 to 𝑔1 defined on 𝛾̃+1 as

𝑔1 =

{

𝑔1 on 𝛾1,

0 on 𝛾̃+1 ⧵ 𝛾1.
(2.16)

Then, the transmission problem (2.4) with 𝑁 = 1 is equivalent to the following interface problem:

−𝛥𝑤 = 0 in 𝛺 ⧵ 𝛾̃+1 , (2.17a)

[𝑤] = 0 on 𝛾̃+1 , (2.17b)

[𝜕𝐧𝑤] = 𝑔1 on 𝛾̃+1 , (2.17c)

𝑤 = 0 on 𝜕 𝛺 . (2.17d)

Note that 𝛺− ⊂ 𝛺0. By Lemmas 2.9 and 2.11, if 𝑔1 ∈ 𝐻𝛽1 (𝛾1), then
‖𝑤‖

𝐻min{1+𝛼 ,𝛽1+ 3
2 ,2−𝜖}(𝛺−)

≤‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 ,2−𝜖}(𝛺0)
≤ 𝐶‖𝑔1‖

𝐻min{𝛽1 ,
1
2 −𝜖}(𝛾̃+1 )

=𝐶‖𝑔 ‖ 1 ≤ 𝐶‖𝑔 ‖ 𝛽 .
(2.18)
1
𝐻̃min{𝛽1 , 2 −𝜖}(𝛾1)

1 𝐻 1 (𝛾1)
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If 𝑔1 ∈ 𝐻𝛽1
0 (𝛾1) and 𝛽1 +

1
2 > 0 is not an integer, then

‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 }(𝛺−)
≤ ‖𝑤‖

𝐻min{1+𝛼 ,𝛽1+ 3
2 }(𝛺0)

≤ 𝐶‖𝑔1‖𝐻𝛽1 (𝛾̃+1 ) = 𝐶‖𝑔1‖𝐻𝛽1 (𝛾1)
, (2.19)

and if 𝑔1 ∈ 𝐻𝛽1
0 (𝛾1) and 𝛽1 +

1
2 > 0 is an integer, then

‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 −𝜖}(𝛺−)
≤ ‖𝑤‖

𝐻min{1+𝛼 ,𝛽1+ 3
2 −𝜖}(𝛺0)

≤ 𝐶‖𝑔1‖𝐻𝛽1−𝜖 (𝛾̃+1 ) ≤ 𝐶‖𝑔1‖𝐻𝛽1 (𝛾1)
. (2.20)

Similarly, we can extend the line crack 𝛾1 to a closed sufficiently smooth curve 𝛾̃−1 in 𝛺− as shown in Fig. 2(d) and obtain similar
stimates on 𝛺+. It can be observed that 𝑤 is smooth in the neighborhood of 𝛾 ′1 ⧵ 𝛾1. Thus, if 𝑔1 ∈ 𝐻𝛽1 (𝛾1), then

‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 ,2−𝜖}(𝛺⧵𝛾1)
≤ 𝐶‖𝑔1‖𝐻𝛽1 (𝛾1)

; (2.21)

and if 𝑔1 ∈ 𝐻𝛽1
0 (𝛾1), then

‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 }(𝛺⧵𝛾1)
≤𝐶‖𝑔1‖𝐻𝛽1 (𝛾1)

, if 𝛽1 +
1
2 > 0 is not an integer,

‖𝑤‖
𝐻min{1+𝛼 ,𝛽1+ 3

2 −𝜖}(𝛺⧵𝛾1)
≤𝐶‖𝑔1‖𝐻𝛽1 (𝛾1)

, if 𝛽1 +
1
2 > 0 is an integer.

(2.22)

We can apply the regularity estimate (2.21) or (2.22) to the case of multiple line cracks and obtain the estimate (2.14) or (2.15) by
sing the superposition principle, as discussed in Remark 2.7. □

Theorem 2.13. Let 𝑢 be the solution of problem (1.1), and 𝑤 be the solution of the transmission problem (2.4), then it follows
𝑢 − 𝑤̄ ≡ 0 in 𝛺 , (2.23)

where 𝑤̄ is the extended solution of 𝑤 in 𝛺 by (2.8).

Proof. Define the neighborhood of the line crack 𝛾𝑙 as

𝑅𝜖(𝛾𝑙) ∶= {𝑥 ∈ 𝛺 | 𝑑 𝑖𝑠𝑡(𝑥, 𝛾𝑙) ≤ 𝜖}, 𝑙 = 1,… , 𝑁 .
Let 𝑅𝜖 = ∪𝑁𝑙=1𝑅𝜖(𝛾𝑙) and 𝛺 = 𝑅𝜖 ∪ (𝛺 ⧵ 𝑅𝜖). We denote the unit outward norm vector of 𝛺 ⧵ 𝑅𝜖 (inward for 𝑅𝜖) on 𝜕 𝑅𝜖 by 𝐧𝜖 .

For any 𝑣 ∈ 𝐶∞
0 (𝛺),

−∫𝛺
𝛥𝑤̄𝑣𝑑 𝑥 = −

(

∫𝛺⧵𝑅𝜖
𝛥𝑤𝑣𝑑 𝑥 + ∫𝑅𝜖

𝛥𝑤̄𝑣𝑑 𝑥
)

= −∫𝑅𝜖
𝛥𝑤̄𝑣𝑑 𝑥

=∫𝜕 𝑅𝜖
𝜕𝐧𝜖𝑤𝑣𝑑 𝑠 + ∫𝑅𝜖

∇𝑤̄∇𝑣𝑑 𝑥.
(2.24)

where we have used ((2.4)a) in the second equality, namely, 𝛥𝑤 = 0 in 𝛺⧵𝑅𝜖 ⊂ 𝛺⧵∪𝑁𝑙=1𝛾𝑙, and Green’s formula in the third equality.
By Cauchy–Schwarz inequality, Lemma 2.8 and, the boundedness of ∇𝑣,

|

|

|

|

|

∫𝑅𝜖
∇𝑤̄∇𝑣𝑑 𝑥

|

|

|

|

|

≤ ‖∇𝑤̄‖𝐿2(𝑅𝜖 )‖∇𝑣‖𝐿2(𝑅𝜖 ) ≤ ‖∇𝑤̄‖𝐿2(𝛺)‖∇𝑣‖𝐿∞(𝛺)|𝑅𝜖|
1
2 → 0, as 𝜖 → 0,

where |𝑅𝜖| is the area of the region 𝑅𝜖 . Therefore, take 𝜖 → 0 in (2.24), it follows

−∫𝛺
𝛥𝑤̄𝑣𝑑 𝑥 = lim

𝜖→0∫𝜕 𝑅𝜖
𝜕𝐧𝜖𝑤𝑣𝑑 𝑠. (2.25)

Let 𝑢̃ = 𝑢 − 𝑤̄. Then for any 𝑣 ∈ 𝐶∞
0 (𝛺), it holds

−∫𝛺
𝛥 ̃𝑢𝑣𝑑 𝑥 = − ∫𝛺

𝛥𝑢𝑣𝑑 𝑥 + ∫𝛺
𝛥𝑤̄𝑣𝑑 𝑥 =

𝑁
∑

𝑙=1
∫𝛾𝑙

𝑔𝑙𝑣𝑑 𝑠 − lim
𝜖→0∫𝜕 𝑅𝜖

𝜕𝐧𝜖𝑤𝑣𝑑 𝑠 = 0, (2.26)

where we have used (1.1) for the first term and (2.25) for the second term in the second equality, and

lim
𝜖→0∫𝜕 𝑅𝜖

𝜕𝐧𝜖𝑤𝑣𝑑 𝑠 =
𝑁
∑

𝑙=1
∫𝛾𝑙

[𝜕𝐧𝑤]𝑣𝑑 𝑠 =
𝑁
∑

𝑙=1
∫𝛾𝑙

𝑔𝑙𝑣𝑑 𝑠.

Since 𝑣 is arbitrary, (2.26) implies

−𝛥 ̃𝑢 = 0 in 𝛺 ,
which together with the boundary condition, 𝑢̃ = 𝑢 − 𝑤̄ = 0 on 𝜕 𝛺, yields 𝑢̃ ≡ 0 in 𝛺. □

Corollary 2.2. Recall 𝛼, 𝛽 are given in Theorem 2.12. For any 𝜖 > 0, it holds:
(i) Let 𝑢 be the solution of problem (1.1), then 𝑤 = 𝑢|𝛺⧵∪𝑁𝑙=1𝛾𝑙

solves the transmission problem (2.4);
(ii) If 𝑔 ∈ 𝐻𝛽𝑙 (𝛾 ), 𝑙 = 1,… , 𝑁 , it follows
𝑙 𝑙
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𝑢 ∈ 𝐻
3
2−𝜖(𝛺) ∩𝐻min{𝛼+1,𝛽+ 3

2 ,2−𝜖}(𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙).

Further, if 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙), 𝑙 = 1,… , 𝑁 , it follows

𝑢 ∈ 𝐻
3
2−𝜖(𝛺) ∩𝐻min{𝛼+1,𝛽+ 3

2 }(𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙), if 𝛽 + 1
2 > 0 is not an integer,

𝑢 ∈ 𝐻
3
2−𝜖(𝛺) ∩𝐻min{𝛼+1,𝛽+ 3

2−𝜖}(𝛺 ⧵ ∪𝑁𝑙=1𝛾𝑙), if 𝛽 + 1
2 > 0 is an integer.

(2.27)

Proof. The proof follows from Lemmas 2.6, 2.8, Theorems 2.12 and 2.13. □

Remark 2.14. A graded finite element method was proposed for a similar elliptic problem with a single line Dirac delta source 𝛿𝛾1
in [3]. However, for general 𝑔𝑙 ≠ 1, the grading parameter used to generate the graded meshes depends on the smoothness of the
function 𝑔𝑙. Determining this parameter can be challenging and may vary from case to case. In contrast, the AFEM considered in
this paper can be applied to general coefficients 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙) with 𝛽𝑙 ≥ 0.

Remark 2.15. Theorem 2.12 and Corollary 2.2 remain valid even when 𝛾𝑙, 𝑙 = 1,… , 𝑁 , are sufficiently smooth curved segments.

3. Adaptive finite element method

In this section, we propose the finite element methods based on the regularity derived in the previous section. Let  be a shape-
egular triangulation of 𝛺 into disjoint elements {𝑇 }𝑇∈ . Denote the set of edges of  by  = 𝐼 ∪ 𝐵 , where 𝐼 and 𝐵 represent

the set of the interior edges and the boundary edges, respectively. For any triangle 𝑇 ∈  , we denote the diameter of 𝑇 by ℎ𝑇 .
The Lagrange finite element space is defined by

𝑆( ) = {𝑣 ∈ 0(𝛺) ∩𝐻1
0 (𝛺) ∶ 𝑣|𝑇 ∈ 𝑃𝑘(𝑇 ), ∀ 𝑇 ∈  },

where 𝑃𝑘(𝑇 ) denotes polynomials of maximal degree 𝑘 on 𝑇 .
Based on the variational formulation (2.1), the standard finite element solution for problem (1.1) is to find 𝑢ℎ ∈ 𝑆( ) such that

∫𝛺
∇𝑢ℎ ⋅ ∇𝑣ℎ𝑑 𝑥 =

𝑁
∑

𝑙=1
∫𝛾𝑙

𝑔𝑙(𝑠)𝑣ℎ(𝑠)𝑑 𝑠, ∀ 𝑣ℎ ∈ 𝑆( ). (3.1)

3.1. Standard finite element method

We suppose that the mesh  consists of quasi-uniform triangles with mesh size ℎ ∶= maxℎ𝑇 .
Recall that the solution 𝑢 ∈ 𝐻

3
2−𝜖(𝛺) for any 𝜖 > 0 (see Lemma 2.6), the standard error estimate [36] on general quasi-uniform

meshes, allowing the line cracks pass through the triangles, yields a suboptimal error estimate,

‖𝑢 − 𝑢ℎ‖𝐻1(𝛺) ≤ 𝐶 ℎ 1
2−𝜖 . (3.2)

We further assume the quasi-uniform mesh  conforming to line cracks 𝛾𝑙. Namely, 𝛾𝑙 are the union of some edges in 𝐼 and
do not cross with any triangles in  . Recall 𝛼, 𝛽 are given in Theorem 2.12, and the regularity in Corollary 2.2 for 𝑢 restricted on
⧵∪𝑁𝑙=1𝛾𝑙. Then the standard error estimate of the finite element approximations on conforming quasi-uniform meshes gives a better

error estimate compared to (3.2). For 𝛽𝑙 ≥ 0, if all 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛾𝑙), then

‖𝑢 − 𝑢ℎ‖𝐻1(𝛺) ≤ 𝐶 ℎmin{𝛼 ,𝛽+ 1
2 ,1−𝜖}, (3.3)

and if all 𝑔𝑙 ∈ 𝐻𝛽𝑙
0 (𝛾𝑙), then

‖𝑢 − 𝑢ℎ‖𝐻1(𝛺) ≤ 𝐶 ℎmin{𝑘,𝛼 ,𝛽+ 1
2 }, if 𝛽 + 1

2 > 0 is not an integer;

‖𝑢 − 𝑢ℎ‖𝐻1(𝛺) ≤ 𝐶 ℎmin{𝑘,𝛼 ,𝛽+ 1
2−𝜖}, if 𝛽 + 1

2 > 0 is an integer.
(3.4)

From (3.2), (3.3) and (3.4), we can find that the meshes conforming to line cracks gives a better convergence rate. However, no
atter whether the meshes conforming to line cracks, the singularity can slow down the convergence of the standard finite element
ethod associated with the quasi-uniform meshes. To further improve the convergence rate, we introduce an adaptive finite element
ethod based on residual type a posteriori error estimator to approximate the solution of problem (1.1).

3.2. Residual-based a posteriori error estimators

We begin by reviewing some existing a posteriori error estimators that can be applied to the elliptic problem (1.1). Following
this, we propose a new a posteriori error estimator based on the equivalent transmission problem.
9 
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3.2.1. Estimator based on regularization
One way to propose an efficient and reliable residual-based error estimator is to regularize the source term such that the

regularized source term belongs to 𝐿2(𝛺) or 𝐿𝑝(𝛺) with 1 < 𝑝 < ∞ [20,32]. This allows for the application of the residual-based a
osteriori error estimator for the usual Poisson problem. Let 𝑔𝑟 ∈ 𝐿2(𝛺) be a regularized function of the source term ∑𝑁

𝑙=1 𝑔𝑙𝛿𝛾𝑙 in
(1.1), and as 𝑟→ 0, the solution converges to the exact solution. An example of 𝑔𝑟 will be presented in Example 4.3 Test case 1. In
turn, the classical residual-based a posteriori error estimator is given by

𝜉 =

(

∑

𝑇∈
𝜉2𝑇 (𝑢ℎ)

)
1
2

, (3.5)

where the local indicator

𝜉𝑇 (𝑢ℎ)2 = ℎ2𝑇 ‖𝛥𝑢ℎ + 𝑔
𝑟
‖

2
𝐿2(𝑇 )

+ 1
2

∑

𝑒∈𝜕 𝑇∩𝐼
ℎ𝑇 ‖[𝜕𝐧𝑢ℎ]‖2𝐿2(𝑒)

, (3.6)

with [𝜕𝐧𝑢ℎ] being the jump of the normal derivatives of 𝑢ℎ on the interior edges of element 𝑇 .
The regularization technique is an effective approach for developing an adaptive finite element algorithm that does not require

the mesh to conform to line cracks. However, it is important to note that the resulting adaptive finite element solution is subject to
oth discretization error and regularization error. Moreover, choosing the parameter 𝑟 in numerical simulations is a nontrivial task.
t is sometimes taken as a fixed constant [20], such that the regularization error is comparable to or smaller than the discretization

error.

3.2.2. Estimator based on the transmission problem
In this subsection, we mainly introduce an alternative posteriori error estimator, which does not involve the regularized error.

Note that each element 𝑇 ∈  is an open set. We assume that the quasi-uniform mesh  conforms to line cracks 𝛾𝑙, namely, each
element 𝑇 ∈  satisfies

𝛾𝑙 ∩ 𝑇 = ∅, 𝑙 = 1,… , 𝑁 . (3.7)

For analysis convenience, we extend 𝑔𝑙 ∈ 𝐻𝛽𝑙 (𝛺) from 𝛾𝑙 to 𝐼 by defining

𝑓 =

{

𝑔𝑙 , 𝑒 ∈ 𝛾𝑙 , 𝑙 = 1,… , 𝑁 ,
0, 𝑒 ∈ 𝐼∖ ∪𝑁𝑙=1 𝛾𝑙 .

(3.8)

Let 𝐧 be the outward unit normal derivative of edge 𝑒 ∈  . By Corollary 2.2, [𝜕𝐧𝑢] = 𝑔𝑙 = 𝑓 for 𝑒 ∈ 𝛾𝑙, and [𝜕𝐧𝑢] = 0 = 𝑓 for
∈ 𝐼∖ ∪𝑁𝑙=1 𝛾𝑙. Therefore, [𝜕𝐧𝑢] is also extended to 𝐼 in the sense

[𝜕𝐧𝑢]|𝑒 = 𝑓 |𝑒, 𝑒 ∈ 𝐼 . (3.9)

Recall that the transmission problem (2.4) features the interface conditions on the line cracks 𝛾𝑙, causing the meshes to conform
to the line cracks. Based on its equivalence to the elliptic problem (1.1), we propose the following residual-based a posteriori error
stimator,

𝜂 =

(

∑

𝑇∈
𝜂2𝑇 (𝑢ℎ)

)
1
2

, (3.10)

where the local indicator on 𝑇 ∈  is defined by

𝜂𝑇 (𝑢ℎ)2 = ℎ2𝑇 ‖𝛥𝑢ℎ‖
2
𝐿2(𝑇 )

+ 1
2

∑

𝑒∈𝜕 𝑇∩𝐼
ℎ𝑇 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖2𝐿2(𝑒)

. (3.11)

Before we present the efficiency and reliability of the proposed a posteriori error estimator (3.10), we first prepare some necessary
nequalities and estimates.

Lemma 3.1 (Trace Inequality [37]). For any element 𝑇 ∈  , ∀𝑒 ⊂ 𝜕 𝑇 , we have
‖𝑣‖𝐿2(𝑒) ≤ 𝐶 ℎ−1∕2𝑇 (‖𝑣‖𝐿2(𝑇 ) + ℎ𝑇 ‖∇𝑣‖𝐿2(𝑇 )), ∀𝑣 ∈ 𝐻1(𝑇 ).

Lemma 3.2 (Inverse Inequality [37]). For any element 𝑇 ∈  and 𝑣 ∈ 𝑃𝑘(𝑇 ), we have
|𝑣|𝐻𝑗 (𝑇 ) ≤ 𝐶 ℎ−𝑗𝑇 ‖𝑣‖𝐿2(𝑇 ), ∀ 0 ≤ 𝑗 ≤ 𝑘.
10 
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Lemma 3.3 (Interpolant Error Estimate [37]). For any 𝑣 ∈ 𝐻 𝑙(𝑇 ), 𝑙 ≥ 1, it follows
‖𝑣 −𝛱 𝑣‖𝐻𝑚(𝑇 ) ≤ 𝐶 ℎ𝑙−𝑚‖𝑣‖𝐻 𝑙 (𝑇 ),

where 𝑚 = 0, 1 and 𝛱 𝑣 ∈ 𝑆( ) represents the Clément interpolation of 𝑣.
In the following analysis, we make use of the equivalence of problem (1.1) to the transmission problem (2.4) as discussed in

Section 2.3, and we pay special attention to handle the flux jumps (3.9) on line cracks 𝛾𝑙 in the following reliability analysis.

Theorem 3.4 (Reliability). Assume that 𝑢 and 𝑢ℎ are the solution of (1.1) and (3.1), respectively. Then the residual-based a posteriori error
estimator 𝜂 satisfies the global bound,

‖∇(𝑢 − 𝑢ℎ)‖𝐿2(𝛺) ≤ 𝐶 𝜂(𝑢ℎ). (3.12)

Proof. Let 𝑒𝑢 = 𝑢 − 𝑢ℎ, we have

‖∇𝑒𝑢‖2𝐿2(𝛺)
= ∫𝛺

∇𝑒𝑢 ⋅ ∇𝑒𝑢 𝑑 𝑥 = ∫𝛺
∇𝑒𝑢 ⋅ ∇(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥, (3.13)

where we have used the Galerkin orthogonality to subtract an interpolant 𝛱 𝑒𝑢 ∈ 𝑆( ) to 𝑒𝑢. Note that by Corollary 2.2(i) and (3.7),
it holds 𝛥𝑢 = 𝛥𝑤 = 0, ∀𝑇 ∈  . Therefore,

𝛥𝑒𝑢 = 𝛥𝑢 − 𝛥𝑢ℎ = −𝛥𝑢ℎ, in each 𝑇 ∈  . (3.14)

Thus splitting (3.13) into a sum over the elements and using Green’s formula, we have
∑

𝑇∈
∫𝑇

∇𝑒𝑢 ⋅ ∇(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥 =
∑

𝑇∈
∫𝑇

−𝛥𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥 + ∫𝜕 𝑇
𝐧 ⋅ ∇𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠

=
∑

𝑇∈

(

∫𝑇
𝛥𝑢ℎ(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥 + ∫𝜕 𝑇∩𝐼

𝐧 ⋅ ∇𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠
)

,

where we have used 𝛱 𝑒𝑢 = 𝑒𝑢 = 0 on 𝜕 𝛺. Note that 𝑒𝑢 is continuous by Corollary 2.1 and the continuity of the finite element
olution, so we have (𝑒+𝑢 −𝛱 𝑒+𝑢 )|𝑒 = (𝑒−𝑢 −𝛱 𝑒−𝑢 )|𝑒 for any 𝑒 = 𝜕 𝑇 + ∩ 𝜕 𝑇 − ∈ 𝐼 . Thus, it follows

∫𝑒∩𝜕 𝑇+
𝐧 ⋅ ∇𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠 + ∫𝑒∩𝜕 𝑇−

𝐧 ⋅ ∇𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠

=∫𝑒
𝐧+ ⋅ ∇𝑒+𝑢 (𝑒

+
𝑢 −𝛱 𝑒+𝑢 ) + 𝐧− ⋅ ∇𝑒−𝑢 (𝑒

−
𝑢 −𝛱 𝑒−𝑢 ) 𝑑 𝑠

=∫𝑒

(

(𝐧+ ⋅ ∇𝑢+ + 𝐧− ⋅ ∇𝑢−) − (𝐧+ ⋅ ∇𝑢+ℎ + 𝐧− ⋅ ∇𝑢−ℎ )
)

(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠

=∫𝑒
[𝜕𝐧𝑢](𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠 − ∫𝑒

[𝜕𝐧𝑢ℎ](𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠.

This, together with (3.9), implies that
∑

𝑇∈
∫𝜕 𝑇∩𝐼

𝐧 ⋅ ∇𝑒𝑢(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠 =
∑

𝑒∈𝐼

(

∫𝑒
[𝜕𝐧𝑢](𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠 − ∫𝑒

[𝜕𝐧𝑢ℎ](𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠
)

=
∑

𝑒∈𝐼
∫𝑒
(𝑓 − [𝜕𝐧𝑢ℎ])(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠.

Returning to the sum over the elements with simply distributing half of 𝑓 − [𝜕𝐧𝑢ℎ] on 𝑇 + and the remaining half on 𝑇 −, we have

‖∇𝑒𝑢‖2𝐿2(𝛺)
=

∑

𝑇∈

(

∫𝑇
𝛥𝑢ℎ(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥 + 1

2
∑

𝑒∈𝜕 𝑇∩𝐼 ∫𝑒
(𝑓 − [𝜕𝐧𝑢ℎ])(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠

)

. (3.15)

Next, we estimate the terms on the right hand side of (3.15) one by one.
Using Cauchy–Schwarz inequality and Lemma 3.3, we have

∫𝑇
𝛥𝑢ℎ(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑥 ≤ ‖𝛥𝑢ℎ‖𝐿2(𝑇 )‖𝑒𝑢 −𝛱 𝑒𝑢‖𝐿2(𝑇 ) ≤ 𝐶 ℎ𝑇 ‖𝛥𝑢ℎ‖𝐿2(𝑇 )‖∇𝑒𝑢‖𝐿2(𝑇 ). (3.16)

Then, using Cauchy–Schwarz inequality, Lemma 3.1, and Lemma 3.3, we have

∫𝑒
(𝑓 − [𝜕𝐧𝑢ℎ])(𝑒𝑢 −𝛱 𝑒𝑢) 𝑑 𝑠 ≤ ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)‖𝑒𝑢 −𝛱 𝑒𝑢‖𝐿2(𝑒)

≤ 𝐶
(

ℎ−1𝑇 ‖𝑒𝑢 −𝛱 𝑒𝑢‖2𝐿2(𝑇 )
+ ℎ𝑇 ‖∇(𝑒𝑢 −𝛱 𝑒𝑢)‖2𝐿2(𝑇 )

)1∕2
‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

≤ 𝐶 ℎ1∕2𝑇 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)‖∇𝑒𝑢‖𝐿2(𝑇 ). (3.17)

The estimate (3.12) now follows from (3.15)–(3.17). □
11 
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Let 𝑓 ∈ 𝑃𝑘(𝑒) be the 𝐿2-projection of 𝑓 . We define the oscillation on 𝑒 ∈ 𝐼 by

𝑜𝑠𝑐(𝑒)2 = ℎ𝑒‖𝑓 − 𝑓‖2
𝐿2(𝑒)

,

where ℎ𝑒 is the length of 𝑒. Let 𝑒 = 𝜕 𝑇 + ∩ 𝜕 𝑇 − with 𝑇 + and 𝑇 − being two adjacent triangles, and we set 𝜔𝑒 = 𝑇 + ∪ 𝑇 −, then for any
∈ 𝜔𝑒 there exist positive constants 𝐶1 and 𝐶2 such that

𝐶1ℎ𝑇 ≤ ℎ𝑒 ≤ 𝐶2ℎ𝑇 .

For a triangle 𝑇 ∈  with vertices 𝑥1, 𝑥2, 𝑥3, we denote (𝜆𝑥1 , 𝜆𝑥2 , 𝜆𝑥3 ) the barycentric coordinates on 𝑇 . We define a bubble
unction 𝑏𝑇 in 𝑇 by

𝑏𝑇 = 27𝜆𝑥1𝜆𝑥2𝜆𝑥3 . (3.18)

For an edge 𝑒 = 𝑥𝑖𝑥𝑗 ∈ 𝜕 𝑇 ⊂  , we define an edge bubble function 𝑏𝑒 in 𝑇 by

𝑏𝑒 = 4𝜆𝑥𝑖𝜆𝑥𝑗 . (3.19)

For the bubble functions (3.18) and (3.19), we have the following results.

Lemma 3.5 ([30]). For the element bubble function 𝑏𝑇 in (3.18), it has the following properties,
0 ≤ 𝑏𝑇 (𝑥) ≤ 1, ∀𝑥 ∈ 𝑇 , and 𝑏𝑇 (𝑥) = 0, ∀𝑥 ∈ 𝜕 𝑇 . (3.20)

Moreover, for any 𝑣 ∈ 𝑃𝑘, it follows
‖𝑣‖𝐿2(𝑇 ) ≤ 𝐶‖𝑏1∕2𝑇 𝑣‖𝐿2(𝑇 ). (3.21)

Lemma 3.6 ([30]). For 𝑒 = 𝜕 𝑇 + ∩ 𝜕 𝑇 −, the edge bubble function 𝑏𝑒 defined by (3.19) has the following properties,
0 ≤ 𝑏𝑒(𝑥) ≤ 1, ∀𝑥 ∈ 𝜔𝑒, and 𝑏𝑒(𝑥) = 0, ∀𝑥 ∈ 𝜕 𝜔𝑒 ⧵ 𝑒, (3.22)

where 𝜕 𝜔𝑒 = 𝜕 𝑇 + ∪ 𝜕 𝑇 −. Moreover, for any 𝑣 ∈ 𝑃𝑘, it follows
‖𝑣‖𝐿2(𝑒) ≤ 𝐶‖𝑏1∕2𝑒 𝑣‖𝐿2(𝑒), (3.23)

‖∇(𝑏𝑒𝑣)‖𝐿2(𝜔𝑒) ≤ 𝐶 ℎ−1∕2𝑒 ‖𝑣‖𝐿2(𝑒), (3.24)

‖𝑏𝑒𝑣‖𝐿2(𝜔𝑒) ≤ 𝐶 ℎ1∕2𝑒 ‖𝑣‖𝐿2(𝑒). (3.25)

Theorem 3.7 (Efficiency). For the local indicator 𝜂𝑇 defined in (3.11), it follows
𝜂𝑇 (𝑢ℎ) ≤ 𝐶

(

‖∇𝑒𝑢‖𝐿2(𝜔𝑇 ) + 𝑜𝑠𝑐(𝜕 𝑇 )
)

, ∀𝑇 ∈  , (3.26)

where 𝜔𝑇 = ∪𝑒∈𝜕 𝑇𝜔𝑒, and
𝑜𝑠𝑐(𝜕 𝑇 )2 =

∑

𝑒∈𝜕 𝑇
𝑜𝑠𝑐(𝑒)2.

Proof. Using Green’s formula, (3.14) and (3.20), we have

∫𝑇
∇𝑒𝑢 ∇(𝛥𝑢ℎ𝑏𝑇 ) 𝑑 𝑥 = −∫𝑇

𝛥𝑒𝑢 𝛥𝑢ℎ𝑏𝑇 𝑑 𝑥 + ∫𝜕 𝑇
∇𝑒𝑢 ⋅ 𝐧𝛥𝑢ℎ𝑏𝑇 𝑑 𝑠 = ∫𝑇

𝛥𝑢ℎ 𝛥𝑢ℎ𝑏𝑇 𝑑 𝑥, (3.27)

Since 𝛥𝑢ℎ is a piecewise polynomial over  , according to (3.21) we have

‖𝛥𝑢ℎ‖
2
𝐿2(𝑇 )

≤ 𝐶‖𝛥𝑢ℎ𝑏
1∕2
𝑇 ‖

2
𝐿2(𝑇 )

.

Using the Cauchy–Schwarz inequality, Lemma 3.2, and (3.20), it follows that

‖𝛥𝑢ℎ‖
2
𝐿2(𝑇 )

≤ 𝐶 ∫𝑇
∇𝑒𝑢 ∇(𝛥𝑢ℎ𝑏𝑇 ) 𝑑 𝑥 ≤ 𝐶‖∇𝑒𝑢‖𝐿2(𝑇 )‖∇(𝛥𝑢ℎ𝑏𝑇 )‖𝐿2(𝑇 )

≤ 𝐶 ℎ−1𝑇 ‖∇𝑒𝑢‖𝐿2(𝑇 )‖𝛥𝑢ℎ𝑏𝑇 ‖𝐿2(𝑇 ) ≤ 𝐶 ℎ−1𝑇 ‖∇𝑒𝑢‖𝐿2(𝑇 )‖𝛥𝑢ℎ‖𝐿2(𝑇 ),

which gives
ℎ𝑇 ‖𝛥𝑢ℎ‖𝐿2(𝑇 ) ≤ 𝐶‖∇𝑒𝑢‖𝐿2(𝑇 ). (3.28)
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We now extend 𝑓 − [𝜕𝐧𝑢ℎ] from edge 𝑒 to 𝑤𝑒 by taking constants along the normal on 𝑒. The resulting extension 𝐸(𝑓 − [𝜕𝐧𝑢ℎ]) is

a piecewise polynomial in 𝜔𝑒, then according to (3.24)–(3.25),
‖∇(𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒)‖𝐿2(𝜔𝑒) ≤ 𝐶 ℎ−

1
2

𝑒 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒), (3.29)

‖𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒‖𝐿2(𝜔𝑒) ≤ 𝐶 ℎ
1
2
𝑒 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒). (3.30)

Using arguments similar to those leading to (3.27), it follows

∫𝜔𝑒
∇𝑒𝑢 ∇(𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒) 𝑑 𝑥 =

∑

𝑇∈𝜔𝑒
∫𝑇

∇𝑒𝑢 ∇(𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒) 𝑑 𝑥

=
∑

𝑇∈𝜔𝑒

(

∫𝑇
−𝛥𝑒𝑢 𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑥 + ∫𝜕 𝑇

∇𝑒𝑢 ⋅ 𝐧𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠
)

=
∑

𝑇∈𝜔𝑒

(

∫𝑇
𝛥𝑢ℎ 𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑥 + ∫𝜕 𝑇

∇𝑒𝑢 ⋅ 𝐧𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠
)

.

Note that 𝑓 − [𝜕𝐧𝑢ℎ] and 𝑏𝑒 are continuous on 𝑒 ∈ 𝐼 , and 𝑏𝑒 = 0 on
(

∪𝑇∈𝜔𝑒𝜕 𝑇 ⧵ 𝑒
)

, so we have
∑

𝑇∈𝜔𝑒
∫𝜕 𝑇

∇𝑒𝑢 ⋅ 𝐧𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

= ∫𝑒

(

(𝐧+ ⋅ ∇𝑢+ + 𝐧− ⋅ ∇𝑢−) − (𝐧+ ⋅ ∇𝑢+ℎ + 𝐧− ⋅ ∇𝑢−ℎ )
)

(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

= ∫𝑒
[𝜕𝐧𝑢](𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠 − ∫𝑒

[𝜕𝐧𝑢ℎ](𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

= ∫𝑒
(𝑓 − [𝜕𝐧𝑢ℎ])(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠,

where we used (3.9) in the last equality. Therefore, we get

∫𝜔𝑒
∇𝑒𝑢 ∇(𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒) 𝑑 𝑥 =∫𝜔𝑒

𝛥𝑢ℎ 𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑥

+ ∫𝑒
(𝑓 − [𝜕𝐧𝑢ℎ])(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

=∫𝜔𝑒
𝛥𝑢ℎ 𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑥 + ∫𝑒

(𝑓 − [𝜕𝐧𝑢ℎ])2𝑏𝑒 𝑑 𝑠

+ ∫𝑒
(𝑓 − 𝑓 )(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

It follows from (3.23), we obtain

‖𝑓 − [𝜕𝐧𝑢ℎ]‖2𝐿2(𝑒)
≤ 𝐶‖(𝑓 − [𝜕𝐧𝑢ℎ])𝑏1∕2𝑒 ‖

2
𝐿2(𝑒)

.

Using Cauchy–Schwarz inequality and (3.29)–(3.30), (3.22), we have

‖𝑓 − [𝜕𝐧𝑢ℎ]‖2𝐿2(𝑒)
≤𝐶

(

∫𝜔𝑒
∇𝑒𝑢 ∇(𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒) 𝑑 𝑥 − ∫𝜔𝑒

𝛥𝑢ℎ 𝐸(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑥

−∫𝑒
(𝑓 − 𝑓 )(𝑓 − [𝜕𝐧𝑢ℎ])𝑏𝑒 𝑑 𝑠

)

≤𝐶
(

‖∇𝑒𝑢‖𝐿2(𝜔𝑒)‖∇(𝐸([𝑓 − 𝜕𝐧𝑢ℎ])𝑏𝑒)‖𝐿2(𝜔𝑒)

+ ‖𝛥𝑢ℎ‖𝐿2(𝜔𝑒)‖𝐸([𝑓 − 𝜕𝐧𝑢ℎ])𝑏𝑒‖𝐿2(𝜔𝑒)

+‖(𝑓 − 𝑓 )𝑏𝑒‖𝐿2(𝑒)‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

)

≤𝐶
(

ℎ−1∕2𝑒 ‖∇𝑒𝑢‖𝐿2(𝜔𝑒)‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

+ ℎ1∕2𝑒 ‖𝛥𝑢ℎ‖𝐿2(𝜔𝑒)‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

+‖𝑓 − 𝑓‖𝐿2(𝑒)‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

)

≤𝐶 ℎ−1∕2𝑒 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒)

(

‖∇𝑒𝑢‖𝐿2(𝜔𝑒) + ℎ𝑒‖𝛥𝑢ℎ‖𝐿2(𝜔𝑒) + 𝑜𝑠𝑐(𝑒)
)

,

which gives
1 ( )
ℎ 2
𝑒 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒) ≤ 𝐶 ‖∇𝑒𝑢‖𝐿2(𝜔𝑒) + ℎ𝑒‖𝛥𝑢ℎ‖𝐿2(𝜔𝑒) + 𝑜𝑠𝑐(𝑒) . (3.31)
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Fig. 3. Example 4.1: the initial meshes.

Together with the triangle inequality, (3.28) and (3.31), we obtain the estimation

ℎ
1
2
𝑒 ‖𝑓 − [𝜕𝐧𝑢ℎ]‖𝐿2(𝑒) ≤ 𝐶

(

‖∇𝑒𝑢‖𝐿2(𝜔𝑒) + 𝑜𝑠𝑐(𝑒)
)

. (3.32)

The required estimation now follows form (3.28) and (3.32). □

3.2.3. Adaptive finite element algorithm
The adaptive finite element algorithm is based on the general finite element method for problem (1.1), utilizing the error

stimator 𝜂 in (3.10), which is derived from the transmission problem. More specifically, the algorithm is summarized as follows.

Algorithm 3.1 Adaptive finite element algorithm for (1.1).

1: Input: an initial mesh  0; a constant 0 < 𝜃 < 1; the maximum number of mesh refinements 𝑛.
2: Output: the numerical solution 𝑢𝑛ℎ; a new refined mesh  𝑛.
3: for 𝑖 = 0 to 𝑛 do

Solve the discrete equation (3.1) for the finite element solution 𝑢𝑖ℎ on  𝑖;
Computing the local error estimation 𝜂𝑖𝑇 (𝑢

𝑖
ℎ) and the total error estimation 𝜂𝑖(𝑢𝑖ℎ) by (3.11) and (3.10);

if 𝑖 < 𝑛 then
Mark a subset ̃ 𝑖 ⊂  𝑖 of elements to refined such that,

⎛

⎜

⎜

⎝

∑

𝑇∈̃ 𝑖
𝜂𝑖𝑇 (𝑢

𝑖
ℎ)

2
⎞

⎟

⎟

⎠

1∕2

≥ 𝜃 𝜂𝑖(𝑢𝑖ℎ);
Refine each element 𝑇 ∈ ̃ 𝑖 by longest edge bisection to obtain a new mesh  𝑖+1.

end if
end for

Remark 3.8. Both the graded finite element method in [3] and the AFEM considered in this paper are based on the transmission
roblem. However, the graded finite element method relies on an a priori regularity estimate in a weighted Sobolev space for the

transmission problem, whereas the AFEM is based on an a posteriori error estimator derived from the transmission problem.

Remark 3.9. The comparisons of the AFEMs based on different error estimators are presented in Example 4.3. Numerically, the
FEM error in the 𝐻1 norm, derived from the a posteriori error estimator with regularization 𝜉 in (3.5), achieves only a first-order
onvergence rate. In contrast, the solution based on 𝜂 in (3.10), which uses the transmission problem, can achieve arbitrarily

high-order convergence.

Remark 3.10. If the line cracks 𝛾𝑙 are curved line segments, we can still introduce a residual-based a posteriori error estimator
that does not rely on the regularization techniques by exploring the finite element methods, such as the immersed finite element
method [38], and the cut finite element method [39]. For this investigation, we will leave it to our future work.

4. Numerical examples

We present numerical tests for both the finite element method and the adaptive finite element method to validate our theoretical
results. All the numerical examples are implemented based on the FEALPY package [40].
14 
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Fig. 4. Test 1: finite element solutions based on 𝑃1 polynomials after 4 mesh refinements.

Table 1
Case 1–6 in Example 4.1.
Case number 𝑟0 𝑟1 𝑔1 ∈ 𝑢 ∈

Case 1 − 1
4
+ 10−3 1 𝐻

1
4 (𝛾1) 𝐻

3
2
−𝜖 (𝛺) ∩𝐻 7

4 (𝛺∖𝛾1)

Case 2 1
4
+ 10−3 1 𝐻

3
4 (𝛾1) 𝐻

3
2
−𝜖 (𝛺) ∩𝐻2−𝜖 (𝛺∖𝛾1)

Case 3 0 1 𝐶∞(𝛾1) 𝐻
3
2
−𝜖 (𝛺) ∩𝐻2−𝜖 (𝛺∖𝛾1)

Case 4 1
4
+ 10−3 0 𝐻

3
4
0 (𝛾1) 𝐻

3
2
−𝜖 (𝛺) ∩𝐻 9

4 (𝛺∖𝛾1)

Case 5 1
2
+ 10−3 0 𝐻1

0 (𝛾1) 𝐻
3
2
−𝜖 (𝛺) ∩𝐻 5

2 (𝛺∖𝛾1)

Case 6 1 + 10−3 0 𝐻
3
2
0 (𝛾1) 𝐻

3
2
−𝜖 (𝛺) ∩𝐻3−𝜖 (𝛺∖𝛾1)

4.1. Standard finite element method

In this subsection, we present numerical examples to verify the convergence rate of the standard finite element method solving
Eq. (1.1). The quasi-uniform meshes are considered in this subsection, that is, each triangle is divided into four equal triangles in
each mesh refinement. Since the solution 𝑢 is unknown, we use the following numerical convergence rate

 = log2
|𝑢𝑗ℎ − 𝑢

𝑗−1
ℎ |𝐻1(𝛺)

|𝑢𝑗+1ℎ − 𝑢𝑗ℎ|𝐻1(𝛺)

, (4.1)

where 𝑢𝑗ℎ is the finite element solution on the mesh  𝑗 obtained after 𝑗 refinements of the initial triangulation  0.

Example 4.1. In this example, we test the convergence rates of the finite element solutions on quasi-uniform meshes. We consider
problem (1.1) in a square domain 𝛺 = (0, 1)2 with one line crack 𝛾1 = 𝑄1𝑄2 for 𝑄1 = (0.25, 0.5) and 𝑄2 = (0.75, 0.5). We take the
function 𝑔1 = ((𝑥− 0.25)(0.75 −𝑥))𝑟0 + 𝑟1 on 𝛾1. For different parameters 𝑟0, 𝑟1 in Case 1–6 listed in Table 1, we show the smoothness
of the corresponding function 𝑔1, and the regularity for the solution 𝑢 of problem (1.1) followed by Corollary 2.2.

Test 1. We take the initial mesh as the Union-Jack mesh and the line crack 𝛾1 pass through the triangles in the mesh as shown in
Fig. 3(a). The convergence rates of the finite element solutions based on 𝑃1, 𝑃2 polynomials are shown in Table 2, and we find that
suboptimal convergence rates  ≈ 0.5 are obtained for Cases 1−6, which is due to 𝑢 ∈ 𝐻

3
2−𝜖(𝛺), ∀𝜖 > 0 regardless of the smoothness
15 
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Table 2
𝐻1 convergence history of finite element solutions in Example 4.1 Test 1 on Union-Jack meshes.
j 𝑃1 𝑃2

6 7 8 9 4 5 6 7

Case1 0.477 0.485 0.490 0.493 0.484 0.489 0.493 0.495
Case2 0.475 0.486 0.492 0.496 0.493 0.497 0.498 0.499
Case3 0.485 0.491 0.495 0.497 0.495 0.498 0.499 0.499
Case4 0.476 0.487 0.493 0.496 0.499 0.500 0.500 0.500
Case5 0.476 0.487 0.493 0.497 0.503 0.501 0.500 0.500
Case6 0.474 0.487 0.493 0.497 0.505 0.501 0.500 0.500

Table 3
𝐻1 convergence history of finite element solutions in Example 4.1 Test 2 on conforming quasi-uniform meshes.
j 𝑃1 𝑃2

6 7 8 9 5 6 7 8

Case1 0.786 0.786 0.785 0.783 0.792 0.786 0.781 0.777
Case2 0.927 0.937 0.945 0.951 1.045 1.039 1.033 1.028
Case3 0.905 0.916 0.925 0.932 1.000 1.000 1.000 1.000
Case4 0.969 0.979 0.986 0.990 1.253 1.252 1.251 1.251
Case5 0.988 0.994 0.997 0.999 1.500 1.501 1.501 1.501
Case6 0.996 0.999 1.000 1.000 1.865 1.886 1.902 1.914

of 𝑔1 as indicated by Lemma 2.6, and confirms the error estimate (3.2). The contours of the finite element solution for Cases 1−6
are shown in Fig. 4.
Test 2. We take the initial mesh as Fig. 3(b), whose elements conforming to the line crack 𝛾1. The convergence rates of the finite
element solutions based on 𝑃1, 𝑃2 polynomials are shown in Table 3. From the results, we can find that the convergence rates
0.5 <  < 2 depends on the smoothness of the function 𝑔1 and the degree of the polynomials. The results in Table 3 satisfy the
theoretical expectations shown in Corollary 2.2, and the error estimates (3.3) and (3.4).

The two tests above confirm that the finite element solution on the meshes conforming to the line cracks, namely through the
transmission problem, shows better convergence rates than that on meshes with the line crack passing through the triangles.

4.2. Adaptive finite element method

The parameter 𝜃 in Algorithm 3.1 is taken as 𝜃 = 0.25 in following examples. On adaptive meshes, the convergence rate of the
a posteriori error estimator 𝜉 in (3.5) or 𝜂 in (3.10) for 𝑃𝑘 polynomials is called quasi-optimal if

𝜉 ≈ 𝑁−0.5𝑘, or 𝜂 ≈ 𝑁−0.5𝑘.

Here and in what follows, we abuse the notation 𝑁 to represent the total number of degrees of freedom.

Example 4.2. We apply the AFEM to Example 4.1 to test the performance of the proposed a posterior error estimator (3.10) and
the corresponding Algorithm 3.1. We take the mesh in Fig. 3(b) as the initial mesh.

The convergence rates of the error estimator 𝜂 based on 𝑃1 and 𝑃2 polynomials are shown in Fig. 6. From the results, we find
hat the convergence rates of 𝜂 are quasi-optimal. The contours of the AFEM approximations for different cases are shown in Fig. 5,

from which we can find that these solutions are almost identical to those in Example 4.1 Test 1.
For Cases 1−6, the function 𝑔1 is sufficiently smooth on 𝛾1 except near the endpoints 𝑄1 and 𝑄2 of the line crack 𝛾1, so the solution

is more singular near these two endpoints compared with any other regions in the domain. Figs. 7 and 8 show the adaptive meshes
of 𝑃1, 𝑃2 approximations, respectively. We can see clearly that the error estimator guide the mesh refinements densely around the
endpoints 𝑄1 and 𝑄2. We also find that the more regular the solution is, the less dense the mesh concentrates at the endpoints 𝑄1
nd 𝑄2. It is worth noting that Case 3 is an example in [3] solved by the graded finite element method, which showed optimal
onvergence rates with mesh refinements concentrating at the singular points 𝑄1 and 𝑄2 as well.

Example 4.3. We consider problem (1.1) on an L-shaped domain 𝛺 = (−1, 1)2∖[0, 1)2 and take the line cracks ∪6
𝑙=1𝛾𝑙 = 𝜕 𝛺1 with

𝛺1 = (−0.8,−0.2)2∖[−0.5,−0.2)2 as shown in Fig. 9(a). The function 𝑔𝑙 = 5 on 𝛾𝑙 , 𝑙 = 1,… , 6. We apply the AFEMs based on the
residual-based a posteriori error estimators 𝜉 in (3.5) and 𝜂 in (3.10) to solve this problem, respectively. Both AFEMs take the mesh
in Fig. 9(a) as their initial mesh.
Test 1. We first consider the AFEM based on the residual-based a posteriori error estimator 𝜉 in (3.5). For simplicity of presentation,
we denote 𝛾 = ∪6

𝑙=1𝛾𝑙, and 𝑔|𝛾𝑙 = 𝑔𝑙, 𝑙 = 1,… , 6. Instead of directly discretizing (1.1), one discretize its regularized problem, which
s to replace the line Dirac source term ∑𝑁

𝑙=1 𝑔𝑙𝛿𝛾𝑙 by its regularized data [20],

𝑔𝑟(𝑥) = 𝑔(𝑦)𝛿𝑟(𝑦 − 𝑥) d𝑦 ∈ 𝐿2(𝛺),
∫𝛾
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Fig. 5. Example 4.2: AFEM solutions based on 𝑃1 polynomials.

Fig. 6. Example 4.2: error estimators.

where 𝑟 is the regularization parameter depending on the local mesh size, and the line Dirac approximation 𝛿𝑟 of the Dirac
distribution 𝛿 is defined by

𝛿𝑟(𝑥) = 1
𝑟2
𝜓
(𝑥
𝑟

)

,

with suitable choice of 𝜓(𝑥) satisfying [20,41,42]

lim
𝑟→0

𝛿𝑟(𝑥) = lim
𝑟→0

1
𝑟2
𝜓
(𝑥
𝑟

)

= 𝛿(𝑥),

where the limit should be understood in the space of Schwartz distributions [43].
Similar to [20], we take 𝑟 as a constant in actual numerical simulation. More specifically, we set 𝑟 = 0.05, and

𝜓(𝑥) = 1
4
𝜒[−1,1](𝑥1) ⋅ 𝜒[−1,1](𝑥2),

where 𝜒 (𝑥 ) is the characteristic function defined by
[−1,1] 𝑖
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Fig. 7. Example 4.2: adaptive meshes based on 𝑃1 polynomials.

𝜒[−1,1](𝑥𝑖) =
{

1, −1 ≤ 𝑥𝑖 ≤ 1,
0, others.

The contour of the AFEM solution with 𝑔𝑟 as the source function based on 𝑃1 polynomials is shown in Fig. 9(b).
Test 2. We then consider the AFEM based on the residual-based a posteriori error estimator 𝜂 in (3.10), namely, the Algorithm 3.1,
for problem (1.1). The contour of the AFEM solution based on 𝑃1 polynomials is shown in Fig. 9(c), which is comparable to the
contour in Test 1 as shown in Fig. 9(b).

Since 𝑔𝑙 ∈ 𝐶∞(𝛾𝑙), the solution is more singular at the endpoints of line cracks 𝛾𝑙 and the reentrant corner of the domain. The
daptive meshes from Test 1 and Test 2 based on 𝑃1 polynomials are shown in Figs. 10(a) and (b), respectively. From the results,
e find that both meshes are densely refined at the endpoints of the line cracks 𝛾𝑙 and the reentrant corner of the domain, but the
esh from Test 1 is also densely refined on the whole line cracks 𝛾𝑙, 𝑙 = 1,… , 6. Similar adaptive meshes can also be found for Test
 and Test 2 based on 𝑃2 polynomials as shown in Fig. 11(a)–(b). These results imply that the error estimator 𝜂 in (3.10) guides

the mesh refinements effectively by only densely refining the triangles around the endpoints of the line cracks, where the solution
is more singular.

The convergence rates of the error estimator 𝜉 and 𝜂 based on 𝑃1 polynomials are shown in Fig. 10(c). We can find that the
error estimators from both Test 1 and Test 2 are quasi-optimal with 𝜉 ≈ 𝑁−0.5 and 𝜂 ≈ 𝑁−0.5. The convergence rates based on 𝑃2
polynomials are shown in Fig. 11(c). From the results, we can find that the error estimator 𝜂 ≈ 𝑁−1 for Test 2 is quasi-optimal, but
the error estimator 𝜉(≈ 𝑁−0.5) for Test 1 does not achieve the quasi-optimal rate even with more dense refined meshes.

Example 4.4. In this example, we first introduce four intersecting line cracks 𝛾𝑙 = 𝑄𝑄𝑙, 𝑙 = 1,… , 4, where 𝑄(0.5, 0.5), 𝑄1(0.25, 0.5),
𝑄2(0.75, 0.5), 𝑄3(0.5, 0.25) and 𝑄4(0.5, 0.75). Here, we consider three types of geometries of 𝛺. Geometry 1 consists of two line cracks
𝛾2 and 𝛾4; Geometry 2 consists of three line cracks 𝛾2, 𝛾3 and 𝛾4; Geometry 3 consists of all line cracks 𝛾𝑙, 𝑙 = 1,… , 4. The initial
meshes of Geometry 1−3 are shown in Fig. 13. The functions 𝑔𝑙 on each line crack 𝛾𝑙 are taken as the following,

𝑔1 = −𝑔2 = −𝑔3 = 𝑔4 = −1. (4.2)
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Fig. 8. Example 4.2: adaptive meshes based on 𝑃2 polynomials.

Fig. 9. Example 4.3: Initial mesh and finite element solutions.

The history of the error estimators are reported in Fig. 14, which shows that the convergence rates of the error estimators are
quasi-optimal for all the three cases. Figs. 15–16 and Fig. 12 show the corresponding adaptive mesh refinements and the numerical
solutions, respectively. We can see clearly that the error estimator successfully guide the mesh refinement around the singular points
𝑄 and 𝑄𝑙 , 𝑙 = 1, 2, 3, 4, where the solution shows singularity.
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Fig. 10. Example 4.3: Meshes and estimators based on 𝑃1 polynomials.

Fig. 11. Example 4.3: Meshes and estimators based on 𝑃2 polynomials.

Fig. 12. Example 4.4: AFEM solutions based on 𝑃1 polynomials.
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Fig. 13. Example 4.4: initial meshes.

Fig. 14. Example 4.4: error estimators.

Fig. 15. Example 4.4: adaptive meshes based on 𝑃1 polynomials.
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Fig. 16. Example 4.4: adaptive meshes based on 𝑃2 polynomials.

5. Conclusion

In this work, we propose a novel residual-based a posteriori estimator for elliptic problems with line Dirac delta functions. To
begin our approach, we first identify an equivalent transmission problem that shares the same solution as the original problem and
treats the line cracks as the interfaces. This transmission problem for our case is an interface problem, which has a continuous
olution and nonzero flux jumps [𝜕𝐧𝑢] = 𝑔𝑙 on the line cracks 𝛾𝑙. The proposed a posteriori estimator, relying on meshes conforming
o the line cracks, consists of element residuals with zero source and edge residuals involving flux jumps 𝑔𝑙. We derive the reliability
nd efficiency of the a posteriori estimator with the main focus on handling the estimates of the edge residuals. An AFEM is given
ased on the proposed a posteriori estimator and the bisection refinement method. Our method has some remarkable achievements.
e identify the regularities of the original problem in the whole domain and the domain excluding the line cracks. The proposed

AFEM can achieve the quasi-optimal convergence rate for both low order and high order approximations. The adaptive meshes are
rimarily refined at some singular points of the domain, namely, the endpoints of the line cracks and the singular corners of the

domain.
Although our investigation currently focuses on line cracks, it has potential to expand the proposed method to more complex

ases. In particular, it holds potential for 2D elliptic problems with curved cracks and 3D elliptic problems with surface interfaces
trictly contained within the domain. To explore these extensions, we will need to develop new mathematical tools, and it will be

the focus of our future work.
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