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ARTICLE INFO ABSTRACT

MSC: In this paper, we consider an adaptive finite element method for solving elliptic equations with
65N12 line Dirac delta functions as the source term. Instead of using a local H~' local indicator,
65N30 or regularizing the singular source term and using the classical residual-based a posteriori
ZEJleso error estimator, we propose a novel a posteriori estimator based on an equivalent transmission

problem. This equivalent problem is defined in the same domain as the original problem
Keywords: but features a zero source term and nonzero flux jumps along the line cracks, leading to
Line D1r‘ac.measure a more regular solution. The a posteriori error estimator relies on meshes that conform to
Transmission problem . . . . . . .

Regularity the line cracks, and its edge jump residual essentially incorporates the flux jumps of the
Adaptive finite element method tra.nsmlsswn prf)l?lem on these.cracks. The propqsed .er.ror estimator is Proven to be bth
A posteriori error estimator reliable and efficient. We also introduce an adaptive finite element algorithm based on this
error estimator and the bisection refinement method. Numerical tests demonstrate that quasi-
optimal convergence rates are achieved for both low-order and high-order approximations, with
the associated adaptive meshes primarily refined at a finite number of singular points in the
domain.

1. Introduction
We are interested in the adaptive finite element method for the elliptic boundary value problem

N
—du=Y g, InQ  u=0 onoQ, 1.1
I=1

where 2 c R? is a polygonal domain, y;, / = 1,..., N are line cracks strictly contained in £, which may intersect at certain points,
as illustrated in Fig. 1(a), g, € H” (y,) with §, > 0, and 810y, in the source term Z{i 1 &6, is a line Dirac measure on a line crack y,,
satisfying

(25,,,v) =/g,(s)v(s)ds, v ul, € L*(y). (1.2)

Y

14l

Although g, € H(y) c L*(y,), the line Dirac measure leil g8, & LX(Q).
The elliptic problem (1.1) is commonly used to describe various phenomena such as monophasic flows in porous media, tissue
perfusion, and drug delivery [1]. It also has applications in elliptic optimal control problems [2]. While the solution of the elliptic
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problem (1.1) is generally smooth in most of the domain, it becomes singular near the line cracks y, and the vertices of the
domain [3]. The corner singularity has been well-understood in the literature [4-8] and we will focus on the regularity of the
solution near line cracks y;. The smoothness of the source term can be obtained through the duality argument [9]. Therefore, the
regularity of the solution to problem (1.1) can be derived using the standard elliptic regularity theory [10,11].

Finite element methods for elliptic equations with singular source terms have a long history dating back to the 1970s. However,
the primary focus was on point Dirac delta sources [12-18]. More recently, there has been increased attention on singular sources
on complex geometries [1-3,19-22], including one-dimensional (1D) crack sources. In [19], the finite element method was studied
for problems involving a C2 closed crack strictly contained in the domain, and an adaptive finite element method was proposed
to improve the convergence rate. In [2], as a controlled equation in an optimal control problem, the elliptic problem (1.1) with a
single C? curve crack was solved using the linear finite element method.

The standard finite element method applied to problem (1.1) can only achieve a convergence rate of h% on quasi-uniform meshes
due to the lack of regularity. To improve the convergence rate, Li et al. [3] studied the regularity of the solution in a weighted Sobolev
space and developed an optimal graded finite element algorithm that approximates the singular solution at an optimal convergence
rate on graded meshes. These meshes are densely refined only at the endpoints of the line cracks. However, as the graded finite
element applies to (1.1), the grading parameter utilized to generate the graded meshes depends on the smoothness of the functions
g, Determining this parameter can be difficult and may vary from case to case for different functions g;.

Adaptive finite element methods (AFEMs) provide an alternative approach to obtain optimal finite element solutions for problem
(1.1), as they are effective numerical techniques for problems involving singularities. AFEMs usually consist of four steps (see
e.g., [23,24]),

SOLVE — ESTIMATE — MARK — REFINE,

which generates a sequence of meshes, on which the finite element approximations converge to the solution of the target problem.
AFEM:s rely on a crucial component: the a posteriori error estimator. This estimator is a computable quantity that depends on both the
finite element approximation and known data. It provides information about the size and distribution of the error in the numerical
approximation, which can then be used to guide mesh adaptation and as an error estimate. Results on a posteriori error estimates of
finite element analysis for second-order elliptic problems with L? source terms can be found in [25,26] and the references therein.

Elliptic problems with point Dirac delta source terms have been extensively studied using AFEMs, with residual-based a posteriori
error estimators widely employed to guide mesh adaptation and estimate the finite element solution error [23,26-29]. Since the
Dirac delta source term has a singularity, it is typically regularized to an L?(£2) or LP(2) function with 1 < p < o by projecting
the source term to a polynomial space. As a result, the standard residual-based a posteriori error estimator for the general Poisson
problems [25,30] can be applied.

For elliptic problems with line Dirac delta source terms, a local data indicator was introduced in [31]. However, it is not easy to
compute in practice since it involves a local H~! norm, and the evaluation of the local data indicator for high-order approximations
remains an open issue. More recently, regularization techniques have been introduced in studies such as [20,32], which involve
projecting the source term to an L?(2) or L(2) function. This allows for the use of standard a posteriori error estimators. The
regularization techniques work well for elliptic problems with closed smooth cracks. However, if the cracks are segments, they
cannot well reflect the singularity of the solution at the crack endpoints, see Example 4.3.

The solution of (1.1) is continuous throughout the entire domain €2, but its normal derivative across each line crack shows jumps.
Therefore, we resort to investigating an equivalent elliptic problem with a zero source term and nonzero flux jumps on line cracks
7,- More specifically, the coefficients g, in the line Dirac source term of (1.1) are transferred to the flux jumps on line cracks of the
new problem, which is known as the transmission problem [8]. The transmission problem is defined in the same domain as the
original problem, except on the line cracks, along which features a zero source term and nonzero flux jumps. The solution of the
elliptic problem (1.1) solves the transmission problem, while the solution of the transmission problem is shown to be more regular,
which implies that the finite element solution for problem (1.1) would have a higher convergence rate if the mesh conforms to the
line cracks. We also investigate the finite element approximations on quasi-uniform meshes conforming to the line cracks and show
the error estimates of the finite element approximations. The convergence rates vary depending on the smoothness of the extended
functions of g;.

Our residual-based a posteriori error estimator is proposed based on the transmission problem. First, we triangulate the mesh
conforming to line cracks y,, where y, is the union of some edges in the triangulation. Second, the error estimator consists of two
types of residuals: element residuals with zero source and edge residuals based on the difference between the normal derivative
jumps of the FEM solution and the flux jumps (equal to g;) on line cracks. We derive the reliability and efficiency of the proposed a
posteriori error estimator with new techniques for handling the edge residual. Based on the derived error estimator and the bisection
mesh refinement method, we propose an adaptive finite element algorithm. Quasi-optimal convergence rates can be numerically
achieved for finite element approximations, and the adaptive meshes are primarily refined near the endpoints of line cracks and the
singular corners of the domain.

Compared to existing numerical methods, the proposed approach offers several advantages. Firstly, it can effectively capture
the most singular part of the solution in the domain, primarily refining the mesh near the endpoints of line cracks and the singular
corners of the domain. Secondly, the proposed method is independent of the smoothness of the function g;, whereas the graded finite
element method require knowledge of the smoothness of g; to determine the grading parameter. More specifically, the contributions,
innovations, and significance of this work include:
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(a) (b)

Fig. 1. (a) Domain 2 containing four line cracks y,, y,, y; and y,. (b) £ is decomposed into five sub-domains {Q; ]le by v, i=1,23,4.

To construct a posteriori error estimator for elliptic boundary value problem (1.1) with a Dirac source term on cracks, we
resort to an equivalent transmission problem, which features a zero source term, a zero boundary condition, and an interface
condition on the cracks.

We study the regularity of the elliptic boundary value problem (1.1) in domain £ and the set Q\Ul]i 71> respectively. We show
the regularity of the solution in the set £\ ul ,v: through the transmission problem.

Based on the a posteriori error estimator and the bisection refinement technique, we propose an adaptive finite element
algorithm.

We rigorously derive the reliability and efficiency of the proposed a posteriori error estimator, with an emphasis on handling
the jump of the normal derivatives on the cracks.

We conduct several numerical examples to verify the performance of the proposed method. Specifically, we compare the a
posteriori error estimator with another a posteriori error estimator based on the regularization technique, demonstrating that
the proposed estimator can effectively capture the singularity of the solution near the endpoints of the cracks.

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness and global regularity of problem (1.1) in
the whole domain. In addition, we introduce a transmission problem, and investigate its well-posedness, regularity, and relationship
to problem (1.1). In Section 3, we propose a novel residual-based a posteriori error estimator, demonstrate its reliability and
efficiency, and present our adaptive finite element algorithm. In Section 4, we present various numerical test results to validate our
theoretical findings. Throughout the paper, we use C > 0 to denote a generic constant that may vary depending on the computational
domain but not on the functions involved and mesh parameters.

2. Well-posedness and regularities

Denote by H"(£2), m € Zs, the Sobolev space that consists of functions whose ith (0 < i < m) derivatives are square integrable.
Denote by Hé (£) ¢ H'(22) the subspace consisting of functions with zero trace on the boundary 0. For s > 0, let s = m+t, 0 < t < 1.
Recall that for D C R? for d = 1,2, the fractional order Sobolev space H*(D) consists of distributions v in D satisfying

2 0% v(x) — 00 ()|
00y = Welmiy + 3 [ / P dxdy <o

la|=m

where a = (ay,...,ay) € Z;o is a multi-index such that 9* = aj’j; .05 and |a| = Z,‘.le ;. We denote by H;(D) the closure of C;°(D)

Xq Q)
in HS(D), and H~*(D) the dual space of H(D). Let y C R! be a smooth curve with two endpoints and H*(y) be the space of all v
defined in y such that 5 € H*(R'), where 7 is the extension of v by zero outside y.

2.1. Trace estimates

A sketch drawing of the domain 2 with several line cracks is provided in Fig. 1(a). To obtain the trace estimates on line cracks,
we first introduce the trace estimate on a general polygonal domain with no line cracks.

Lemma 2.1 ([33,34]). Let 2’ be a polygonal domain with no line crack, then the trace operator
9 H(Q) - HS"((}Q’)

is bounded for % <s< %
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Lemma 2.2. For the domain £2 with line segment cracks y;,, | = 1,..., N, the trace operator
1
9 1 HY(2) > H72(y),

is bounded for % <s< %

Proof. By appropriately extending line cracks y;, / = 1, ..., N, to the boundary of the domain € or to another line crack and denoting
the extended line cracks by y/, i = 1,..., N’, we can partition the domain @ into M polygonal subdomains Q;., 1 <j< M, where y,
is shared by neighboring subdomains !2‘( and Q;. (see Fig. 1(b)). For any v € H*(£2), it holds

veE HS(_Q;.), ji=1,...,M.
By Lemma 2.1, if % <s< %, it follows for / =1, ..., N,
loll 1 <lloll 1 <Cllvllgsum gy = Clivll gs)-
H7 2 ) ) UM, ) (@)

=2

Therefore, the conclusion holds. []

2.2. Well-posedness and regularity in 2

To investigate the well-posedness and regularity of elliptic problem (1.1), it is necessary to study the line Dirac measure ), 1’1 1 816y,

1
Lemma 2.3. For ¢ > 0, the line Dirac measure Z;i 1816, EH 2

N N
> a9, <C Y gz,
=1 =1

H 27 !

“(%) satisfying

1
Proof. For v € H21°(Q), by Hélder’s inequality and Lemma 2.2, we have for [ =1,..., N,

<g15y[’ v) =/ gi(s)v(s)ds < C”gllle(y,)”U“Lz(y,) < C“gl||L2(y,)||U||HL'(y,) < C“gl||L2(y[)||U||H%+€(Q)'
"

Therefore, by the duality argument (e.g., [9])

N N N
> &6, =supd (Y gd,v ) ol 1, =10 <C Y gl O
=1 - =1 H: =1
- @ - 5

H 2

1
Remark 2.4. Generally, for a function in H2(£), its trace on y, does not belong to L(y,). Therefore, ¢ = 0 does not hold in
Lemma 2.3.

Remark 2.5. The smoothness of g, € H” (y,) with different f, > 0 cannot affect the smoothness of Z[Z 1 &9, in £, except in the
subset @\ Ul’i 171> for which we will investigate in the next section.

By Lemma 2.3, the problem (1.1) is well-posed. The variational formulation for problem (1.1) is to find u € HS(Q), such that
N

a(u, v) :=/ Vu - Vodx = <2g,5n,u>, Voue HN Q). 2.1
Q =1

In addition, the following global regularity estimate holds.

3
Lemma 2.6. For ¢ > 0, the elliptic boundary value problem (1.1) admits a unique solution u € H2™°(2)n Hé(.Q) satisfying

N
all 5. <C ) lgllzg,. 22)
wie &S

Proof. The standard elliptic theory gives

N N
[lull 3 <cC g6 <C ) gz,
H2™@) ,; o [; Sl

H 27°Q)
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Remark 2.7. The elliptic problem (1.1) is linear, and its solution can be obtained by summing the solutions of the following
problems with one line Dirac source term for / = 1,..., N,

—Au; = g5, in £, uy =0 onodQ. (2.3)

By the superposition principle, u = Zfi | 4. The regularity estimate in Lemma 2.6 is then obtained by the summation of the regularity
estimate |ul| 3 < Cligll 2p) for (2.3) upon using the triangle inequality.
H27S(

By Lemma 2.6 and the Sobolev imbedding Theorem [34], we have the following result.

Corollary 2.1. For e > 0, the solution u of problem (1.1) is Holder continuous u € C%'/2=¢(Q). In particular, the solution u € C°(Q).

Here, Corollary 2.1 implies that the solution of problem (1.1) is continuous across line cracks y;, / = 1,..., N. It is known that
for the general elliptic boundary value problem with an L?(2) source term, the jump of the normal derivative of the solution,
also known as flux jumps, on the line cracks vanishes. However, it becomes significant if the problem is subject to line Dirac delta
functions. Therefore, it is necessary to study the flux jumps on the line cracks to develop efficient numerical schemes. To this end,
we introduce the transmission problem of (1.1) to investigate the normal derivatives of the solution across the line cracks.

2.3. Transmission problem

Let n* be the outward unit normal of the region on each side of the crack y,. For a function v, we denote v* (resp. d,:v*) the
traces of v (resp. Vv) evaluated on the crack y; from the region on each side. We define the jump of v across y; by [v] = v* — v~ and
the jump of its normal derivatives (or flux jumps) on y; by [d,v] =n* - Vot +n™ - Vo~

For the elliptic problem (1.1), we introduce the following interface problem,

—Aw=0 inQ\UY y, (2.4a)
[wl=0 ony,I=1,..,N, (2.4b)
[Opw]l=g ony, I=1,...,N, (2.4¢)
w=0 onodLR, (2.4d)

which is known as the transmission problem of the elliptic problem (1.1) [8]. Compared with the original elliptic problem (1.1), the
cracks y;, [ = 1,..., N are treated as the interfaces. Therefore, the jump conditions ((2.4)b) and ((2.4)c) are treated as the interface
conditions.

To investigate the solution the of the transmission problem (2.4), we define a space

V= {UGHI(Q\U{LYI) D vlge =0, [v]l, =0, 1= 1,...,N},
with the associated norm on V' given by
”U”V = ”UllHl(Q\Ulliln), YveV.

Moreover, if v € H' (), then it follows v € V and ||v]|,, = ol g1 (q)-

Lemma 2.8. The variational formulation for the transmission problem (2.4) is to find w € V such that

N
/ Vw - Vodx = Z / guds, Yve HXQ). (2.5)
VAN =1Jn

Moreover, it admits a unique solution w € V satisfying
w=ulgy - (2.6)

where u is the solution of the elliptic problem (1.1).

Proof. By multiplying a test function v € Hé (£2) on both sides of ((2.4)a), and applying the Green’s formula together with the
interface and boundary conditions ((2.4)b-d), it follows

N
—/ Awvdx =/ Vw - Vodx — 2/[0nw]vds =0, @7
2L 7 eVANT: =1Jn

which gives the variational formulation (2.5).
Since the measure |Q \ U{i 711 =1€2], then the variational formulation (2.5) is equivalent to (2.1).
Therefore, the well-posedness of (2.5) or (2.4) follows from that of (2.1) or (1.1). [
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Fig. 2. The extension of the line crack y,.

Lemma 2.8 implies that the transmission problem (2.4), admits a unique solution in V. Based on the jump condition ((2.4)b),
we can extend it from Q\ Ul’i 71 to the whole domain Q by taking

w in 2\U" y,
D e \UL7 (2.8)
wt(=w") ony, l=1,...,N.
Corollary 2.1 and Lemma 2.8 further imply that
€ Q)N H(Q), 2.9)
thus
”I’D”HI(Q) = |l@lly = llwlly- (2.10)
Therefore, (2.5) is equivalent to the variational formulation
N
a(w, v) = Z/g,vds, ve H)Q), (2.11)
=17
where the bilinear form a(-,-) is defined in (2.1).
2.4. Regularity in Q\ UY 7,
To investigate the regularity of the transmission problem (2.4), we first consider the following interface problem,
—4z=0 in Q\ I, (2.12a)
[z]=0 on Iy, (2.12b)
[0,z1=g on Iy, (2.12¢)
z=0 onoQ, (2.12d)

where T is a closed sufficiently smooth curve strictly contained in @, and g € H?(I)) with § > 0. For problem (2.12), we recall the
following result from [10,35].
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Lemma 2.9. Let z be the solution of the problem (2.12). Then it follows

< Cligl o), (2.13)

llzll Jpmin a3 I \r0)<

where a < i with  being the largest interior angle of the polygonal domain .

Next, we introduce the following result from [10, Theorem 1.2.15 and Theorem 1.2.16].

Lemma 2.10. For a point x € y,, let p,(x) be multiplication of the distances of x to the endpoints of y;. Then

v . 1
r Ly, if veH'() and €0, 5);
1

DVv
s—|v|
1

e LX(Q), if ve Hj(«), |v|<s and s-— % is not an integer.

Recall the definition of the fractional space H *(y,) given at the beginning of Section 2. Then we have the following result.

Lemma 2.11. For any e > 0, the following statements hold,

~ 1
@ if g € HA (7)), it follows g € H™ 27V ); N
() ifg € Hg’(y,) and §; + % > 0 is not an integer, it follows g, € HP (y));

(i) if g € H' (7)) and p, + 1

5 > 0 is an integer, it follows g, € HPi=e(y)).

Proof. The proofs of (i) and (ii) follow from Lemma 2.10. For (iii), we have g, € Hg’ (yp) C Hg’ _e(y,), then the conclusion holds by
applying Lemma 2.10 and the definition of H*(y,). [

Theorem 2.12. Recall that f = min; . {f} and a < % with @ being the largest interior angle of Q2. For any ¢ > 0, let w be the solution
of the transmission problem (2.4). If g; € HP'(y)), I =1, ..., N, then
N

”w” mm a+lﬂ+ 2—€} (.Q\UN

<C Y ey, (2.14)
1) =1

Further, if g € HY (7)), 1 = 1..... N, then
N

[lwl| min{atl g3 ) Z ”g/”Hﬁ](y[), if B + > 0 is not an integer;
H w2 515
N 2.15)
||w||Hmm(a+w+%7€) Z ||g,||H/;,(y[), if p + > 0 is an integer.

@ T

Proof. We begin by considering the case with only one line crack y,, as illustrated in Fig. 2(a). We extend y, to y;, which intersects
the boundary dQ at two points. Consequently, € is divided into two open subdomains, 2~ and Q* (see Fig. 2(b)). Then we prove
that the results hold in 2~ and Q.

In Q*, we extend the line crack y, to form a closed C? curve 7;“, further partitioning £ into two subdomains, £, and ,, as
depicted in Fig. 2(c). Correspondingly, we extend g, defined on y, to g; defined on 71+ as

ny,
W= o
Then, the transmission problem (2.4) with N =1 is equivalent to the following interface problem:
—-Aw=0 inQ \71+, (2.17a)
[w]=0 on 7;', (2.17b)
[Buwl=g on7f, (2.17¢)
w=0 on L. (2.17d)
Note that 2~ C €. By Lemmas 2.9 and 2.11, if g; € H”(y;), then
0t 321 gy W o - g S VBN i 31

(2.18)
=CUE1 i e, S 1N
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If g, € Hf‘ (ry) and g; + % > 0 is not an integer, then

) < < C||g . =C s 2.19
B0 i3y < W0 i a1 ) S OV ) =l (2.19)

and if g, € Hg‘ (yy) and g; + % > 0 is an integer, then

0l a1 gy S 10 s 31 g S CIBmnmey < Cllgnllin (2.20)
Similarly, we can extend the line crack y, to a closed sufficiently smooth curve ';71‘ in 2~ as shown in Fig. 2(d) and obtain similar

estimates on Q7. It can be observed that w is smooth in the neighborhood of y{ \ 7. Thus, if g, € H” 1 (y,), then
||LU|| ScllglllHﬁl(yl); (221)

Hmin( I+a,p1 + % 2—€} (Q\}’l)

and if g, € Hf‘ (r1), then

. 1 . .
[|lwl| min{ Ly +3) <Cligi 1l g [y if g, + 3> 0 is not an integer,

H (@\r1)

(2.22)

. 1 . .
||w||H <Cligill ym vy if g, + 3> 0 is an integer.

min{1+a.f) +3 —¢) @)

We can apply the regularity estimate (2.21) or (2.22) to the case of multiple line cracks and obtain the estimate (2.14) or (2.15) by
using the superposition principle, as discussed in Remark 2.7. []

Theorem 2.13. Let u be the solution of problem (1.1), and w be the solution of the transmission problem (2.4), then it follows
u—w=0 inQ, (2.23)

where w is the extended solution of w in Q2 by (2.8).

Proof. Define the neighborhood of the line crack y,; as
R () :={x € Q|dist(x,y;) L €}, I=1,...,N.

Let R, = U R.(y) and 2 = R, U (L2 \ R,). We denote the unit outward norm vector of 2\ R, (inward for R.) on dR, by n..
For any v € Cg"(Q),

—/ArI)de:— / Awudx+/ Awvdx :—/ Awvdx
Q O\R, R, R

e (2.24)
:/ oy wuds+/ VwVodx.
OR, R,

€ €

where we have used ((2.4)a) in the second equality, namely, 4w = 0in 2\ R, C _Q\U;i 71> and Green’s formula in the third equality.
By Cauchy-Schwarz inequality, Lemma 2.8 and, the boundedness of Vv,

/ VwVuvdx
R

€

where |R,| is the area of the region R.. Therefore, take ¢ — 0 in (2.24), it follows

L
SVl 2w ) IVUll 2R,y S NIVN 2 IVOll Lo () R 2 = 0, as e =0,

—/ Awvdx = lim d, wuds. (2.25)
Q e=0 oR, €
Let it = u — w. Then for any v € C($2), it holds
N
—/ Aiivdx = — / Auvdx +/ Awvdx = 2/ guds —lim [ 9, wvds =0, (2.26)
Q Q Q =JIn =0 Jor, ¢

where we have used (1.1) for the first term and (2.25) for the second term in the second equality, and

N N
lim/ Oy wvds = Y [ [0qwlvds = 2/ guds.
€=0.Jor, =17 =17/

Since v is arbitrary, (2.26) implies
—Ai =0 in Q,

which together with the boundary condition, i =u— =0 on 9, yields a=0in Q. [J

Corollary 2.2. Recall a, B are given in Theorem 2.12. For any e > 0, it holds:
(i) Let u be the solution of problem (1.1), then w = u| oy solves the transmission problem (2.4);
=1

Y
(i) If g € HYi(y), I = 1,..., N, it follows
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3 - 3
= Hffe(.Q) n Hm1n{a+l.ﬂ+§,2—e)(g \ U,]il}’[).

Further, if g, € Hg’(y,), I=1,...,N, it follows
3_e min{a-+1,6+3 ) N . 1 . .
u€H> (&)nH PN @QN VL ). if p+ 5 > 0 s not an integer, 227
B 27
3 3 i 3— . . .
ue H2¢Q)n gmnlerlAti—elgy\ Uf\;ly,), if p+ % > 0 is an integer.

Proof. The proof follows from Lemmas 2.6, 2.8, Theorems 2.12 and 2.13. [

Remark 2.14. A graded finite element method was proposed for a similar elliptic problem with a single line Dirac delta source 6,
in [3]. However, for general g, # 1, the grading parameter used to generate the graded meshes depends on the smoothness of the
function g,. Determining this parameter can be challenging and may vary from case to case. In contrast, the AFEM considered in
this paper can be applied to general coefficients g, € H” (y;) with g, > 0.

Remark 2.15. Theorem 2.12 and Corollary 2.2 remain valid even when y;, I = 1, ..., N, are sufficiently smooth curved segments.

3. Adaptive finite element method

In this section, we propose the finite element methods based on the regularity derived in the previous section. Let 7 be a shape-
regular triangulation of € into disjoint elements {T'};c;. Denote the set of edges of 7' by € = &; U £, where &; and £ represent
the set of the interior edges and the boundary edges, respectively. For any triangle T € 7, we denote the diameter of T by hy.

The Lagrange finite element space is defined by

ST ={vec™(@nH)Q) : vl € PT), VT €T},

where P, (T) denotes polynomials of maximal degree k on T.

Based on the variational formulation (2.1), the standard finite element solution for problem (1.1) is to find u;, € S(7) such that
N

/ Vuy, - Vopdx = Z/ g()vp(s)ds, Y v, € S(T). (3.1)
Q

=177

3.1. Standard finite element method

We suppose that the mesh 7 consists of quasi-uniform triangles with mesh size /4 := max hy.

3
Recall that the solution u € H2 () for any e > 0 (see Lemma 2.6), the standard error estimate [36] on general quasi-uniform
meshes, allowing the line cracks pass through the triangles, yields a suboptimal error estimate,

1
llu =yl 1) < Ch2 ™% 3.2)

We further assume the quasi-uniform mesh 7~ conforming to line cracks y,. Namely, y, are the union of some edges in £; and
do not cross with any triangles in 7. Recall a,  are given in Theorem 2.12, and the regularity in Corollary 2.2 for u restricted on
Q\UIIZ - Then the standard error estimate of the finite element approximations on conforming quasi-uniform meshes gives a better
error estimate compared to (3.2). For §, > 0, if all g, € H?(y,), then

. 1
”u_uh”H](Q) S Chmm(aﬁ*—i'l_é}s (33)
and if all g € H! (7)), then
. 1
llu = upll 1) < chmintkabtz) - if g4 % > 0 is not an integer;

(3.4)
. 1
e = wpll g1y < cpmintkabtz=el - if g4 % > 0 is an integer.

From (3.2), (3.3) and (3.4), we can find that the meshes conforming to line cracks gives a better convergence rate. However, no
matter whether the meshes conforming to line cracks, the singularity can slow down the convergence of the standard finite element
method associated with the quasi-uniform meshes. To further improve the convergence rate, we introduce an adaptive finite element
method based on residual type a posteriori error estimator to approximate the solution of problem (1.1).

3.2. Residual-based a posteriori error estimators

We begin by reviewing some existing a posteriori error estimators that can be applied to the elliptic problem (1.1). Following
this, we propose a new a posteriori error estimator based on the equivalent transmission problem.
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3.2.1. Estimator based on regularization

One way to propose an efficient and reliable residual-based error estimator is to regularize the source term such that the
regularized source term belongs to L2(£2) or L?(22) with 1 < p < oo [20,32]. This allows for the application of the residual-based a
posteriori error estimator for the usual Poisson problem. Let g" € L?(2) be a regularized function of the source term Z,’i 1 &6, in
(1.1), and as r — 0, the solution converges to the exact solution. An example of g" will be presented in Example 4.3 Test case 1. In
turn, the classical residual-based a posteriori error estimator is given by

1
2
&= (Z z;%(uh)) : (3.5)

TeT

where the local indicator

Er(up)® = W]\ Auy, + &' > hrlliouuylll? (3.6)

2
L2(T) + L2(e)’
e€dTNE;

N1 —

with [d,u,] being the jump of the normal derivatives of u; on the interior edges of element 7.

The regularization technique is an effective approach for developing an adaptive finite element algorithm that does not require
the mesh to conform to line cracks. However, it is important to note that the resulting adaptive finite element solution is subject to
both discretization error and regularization error. Moreover, choosing the parameter r in numerical simulations is a nontrivial task.
It is sometimes taken as a fixed constant [20], such that the regularization error is comparable to or smaller than the discretization
error.

3.2.2. Estimator based on the transmission problem

In this subsection, we mainly introduce an alternative posteriori error estimator, which does not involve the regularized error.
Note that each element T € 7 is an open set. We assume that the quasi-uniform mesh 7" conforms to line cracks y;,, namely, each
element T € T satisfies

nnT=@ 1=1,..,N. 3.7

For analysis convenience, we extend g, € H” () from y, to & by defining

, e€y, I=1,...,N,
f= 81 Vi . (3.8)
0, ee&\V, 7

Let n be the outward unit normal derivative of edge e € £. By Corollary 2.2, [d,u] = g = f for e € y;, and [du] = 0 = f for
ee€ &\ U[Ii Vi Therefore, [0,u] is also extended to &; in the sense

[Ongull, = fle, e €& 3.9

Recall that the transmission problem (2.4) features the interface conditions on the line cracks y;, causing the meshes to conform
to the line cracks. Based on its equivalence to the elliptic problem (1.1), we propose the following residual-based a posteriori error
estimator,

1
2
n= <Z n;(u;») , (3.10)

TeT

where the local indicator on T € 7 is defined by

1
nr(n) = Wl Ay, + 5 X, hrllf = 0ndllgs - (3.11)
ecdTNEy

Before we present the efficiency and reliability of the proposed a posteriori error estimator (3.10), we first prepare some necessary
inequalities and estimates.

Lemma 3.1 (Trace Inequality [37]). For any element T € T, Ve C T, we have

-1/2
||U||L2(e) < ChT / (”U”LZ(T) + hT||VU||Lz(T)), Vv e HI(T)-

Lemma 3.2 (Inverse Inequality [37]). For any element T € T and v € P,(T), we have

|U|HJ(T) SCh,;j”UHLz(T), VO<Lj<k

10
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Lemma 3.3 (Interpolant Error Estimate [37]). For any v € H'(T), | > 1, it follows

llo = ol gmery < CR ™™ 0l ey
where m = 0,1 and ITv € S(T) represents the Clément interpolation of v.

In the following analysis, we make use of the equivalence of problem (1.1) to the transmission problem (2.4) as discussed in
Section 2.3, and we pay special attention to handle the flux jumps (3.9) on line cracks y, in the following reliability analysis.
Theorem 3.4 (Reliability). Assume that u and u,, are the solution of (1.1) and (3.1), respectively. Then the residual-based a posteriori error
estimator 7 satisfies the global bound,

V@ —up)ll 20 < Cnluy). 3.12)

Proof. Let e, =u—u,, we have
Ve, ”LZ(Q) /Q Ve, - Ve, dx = /Q Ve, -V(e,—Ile,)dx, (3.13)

where we have used the Galerkin orthogonality to subtract an interpolant ITe, € S(7) to e,. Note that by Corollary 2.2(i) and (3.7),
it holds 4Au = Aw = 0, VT € T. Therefore,
Ade, = Au— Auj, = —Au,, ineachT eT. (3.14)

Thus splitting (3.13) into a sum over the elements and using Green’s formula, we have

/Ve Vie, —Ile,)dx = / —A4e,(e, He)dx+/ n-Ve,(e,—1Ile,)ds
TeT TeT aT

=) </ Auy(e, — Heu)dx+/ n-Ve,(e, - Heu)ds> ,
ter \JT aTngy

where we have used ITe, = ¢, = 0 on 0. Note that ¢, is continuous by Corollary 2.1 and the continuity of the finite element
solution, so we have (e — ITel)|, = (e — ITe;)|, for any e = 0T+ N JT~ € &;. Thus, it follows

/0T+H-Veu(eu—]7eu)ds+/ n-Ve,(e,—1Ile,)ds
en

endT—

=/n+ -Ver(er —Ier)+n - Ve (e —Ie;)ds

e

=/((n+ SVut 40" VuT) =@ - Vi) + 07 - Vuy)) (e, — Ie,)ds
e

= /[0nu](eu —1Ile,)ds — /[0nuh](eu —1Ile,)ds.

This, together with (3.9), implies that

D / n-Ve,(e,—Ie,)ds= Y </[6nu](eu —Me,)ds — /[0nuh](eu —Me,) ds>
TeT JITNE;

2=

/(f [OpupDe, — ITe,) ds.

e€Ey

Returning to the sum over the elements with simply distributing half of f — [d,u,] on T* and the remaining half on T~, we have

Ve, ||L2(Q> Z </ Auy (e, —Heu)dx+— Z /(f [0,15])e, —Heu)ds> (3.15)
TeT

eedTné’I

Next, we estimate the terms on the right hand side of (3.15) one by one.
Using Cauchy-Schwarz inequality and Lemma 3.3, we have

/ Aup(e, — Me,)dx < ||Aupll 2)lle, — eyl 20y < ChyllAugll 200y Ve, Il 207y (3.16)
T
Then, using Cauchy-Schwarz inequality, Lemma 3.1, and Lemma 3.3, we have
/ (f — [0pun e, = MTey)ds < 11 = [nttnlll 20 lew = Megll 2
e
. 1/2
< (hg'lley = e,y + hrliVee, = eI, 0 ) ILF = nttalll 2o
< ChI = 0l 20 1V eull 2 3.17)

The estimate (3.12) now follows from (3.15)—(3.17). [

11
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Let f € P,(e) be the L2-projection of f. We define the oscillation on e € £; by
osc(e’ = hllf = £II;

L2(e)’
where 4, is the length of e. Let e = 0T* N 9T~ with T* and T~ being two adjacent triangles, and we set w, =TT UT", then for any
T € w, there exist positive constants C; and C, such that

Cihy < h, < Cyhy.

For a triangle T € 7 with vertices x;, x,, x3, we denote (4,4
function b, in T by

by =274y Ay, Ay, (3.18)

x> Ax,) the barycentric coordinates on T. We define a bubble

For an edge e = x;x; € T C £, we define an edge bubble function b, in T by

be =44y Ay (3.19)

For the bubble functions (3.18) and (3.19), we have the following results.

Lemma 3.5 ([30]). For the element bubble function by in (3.18), it has the following properties,
0<br(x)<1, Vxe€T, and bp(x)=0, Vxeal. (3.20)
Moreover, for any v € P,, it follows

1/2
0l 2y < ClBY oll 2cry- (3.21)

Lemma 3.6 ([30]). For e = dT* n T, the edge bubble function b, defined by (3.19) has the following properties,

0<b(x)<1, Vx€Eow, and b(x)=0, Vxe€oiw,\e, (3.22)
where dw, = 0T* U 0T ~. Moreover, for any v € P, it follows

1ol 200) < ClIB 0l 200 (3.23)

VG0l 12, < ChZ 10l 20y (3.24)

1560l 20y < CHY 10l 20 (3.25)

Theorem 3.7 (Efficiency). For the local indicator ny defined in (3.11), it follows
np(uy) < C (||Veu||Lz(wT) + osc(BT)) , VT eT, (3.26)

where wr = U,g5r0,, and

osc(aT)2 = z osc(e)zA

eeoT

Proof. Using Green’s formula, (3.14) and (3.20), we have
/ Ve, V(duybr)dx = — / Ae, Aupbr dx +/ Ve, -ndAu,brds = / Auyp, Aupby dx, (3.27)
T T or T
Since Au,, is a piecewise polynomial over 7, according to (3.21) we have
2 1/22
14y 12, < CllAuRY 1
Using the Cauchy-Schwarz inequality, Lemma 3.2, and (3.20), it follows that
||Auh||iz(T) < C/T Ve, V(duybr) dx < C|[Ve, |l 200 IV (Aupb )l 127
< ChF Ve Nl oy | Aupbr |l 2y < CHE Vel 2y | Al 27
which gives
hrllAugll 2y < ClIVe,ll 2. (3.28)

12
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We now extend 7 — [0,u,,] from edge e to w, by taking constants along the normal on e. The resulting extension E(?— [Onup]) is

a piecewise polynomial in w,, then accolrding to (3.24)-(3.25),
IVCECS = [0qu Db 120, < Che 2 I = [0nttg]l 1200y

— 1 _
IECT — [OnttnDbell 200,y < ChZIF = 0l 2

Using arguments similar to those leading to (3.27), it follows
/gveu V(E(f = [Opupb)dx = ) / Ve, V(E(S — [0y ])b,) dx

e Tew,

=) (/ —Ae, E(f = [0ntt )b, dx+/ Ve, - nE(f — [0,u,1)b, ds)
T oT

Tew,
= (/ Auy, E(f = [0qu4Db, dx+/ Ve, -n E(f = [0pup])b, ds>.
Tew, /T ar

Note that f — [d,u,] and b, are continuous on e € &, and b, = 0 on (uTewe oT \ e), so we have
Ve, -n E(f — [0yu,])b, ds
Tew, aT

= /((n+ “Vut+n - Vu ) -t Vu; +n - Vu;)) (?— [Opup Db, ds

e

= /[anu](7 — [0uy1)b, ds — /[Bnuh](7 — [0gup]b, ds

= / (f = [Oqua)(f = [Onit Db, ds,

where we used (3.9) in the last equality. Therefore, we get
Ve, V(E(f — [0yup])b,) dx =/ Auy E(f — [04u;)b, dx

, ®,

+ / (f = [0nunD(F = [gup Db, ds

=/ Auy, E(f = [0qu )b, dx + /(7— [Onu])?b, ds

e

+ / (f = D = [0qupDb, ds

It follows from (3.23), we obtain

I7 = (9t 1112,,,) < CICT = [0quug bl

2
L2(e)

Using Cauchy-Schwarz inequality and (3.29)-(3.30), (3.22), we have
IS = [0qupll2,,, <C < / Ve, V(E(f = [9pupb,) dx — / Auy, E(f = [0yu4 )b, dx

L2(e) =
- / (f = DS = [0qu Db, ds>
e

<C (IVeull 2 IVCEQT = 00ty DBON 20,
+ 11 4up | 20 LECS = Opt Db 1200
I = Pobell 217 = a1l 2,

<C (W 1Veull 2o I = uttlll 2
+ hy Ay 2 I = 101l 2
HIF = Tl 17 = utt]ll 20

-1/2, 7
¢ PIF = 0wl 20y (IVeull 20y + helldtgll 2y + 05¢0))

<Ch
which gilves
27 = [0l 2 < C (llVeulle(me) + | Ayl 2, + osc(e)) .
13

(3.29)

(3.30)

(3.31)
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(a) The initial Union-Jack mesh (b) The mesh conforming to v1

Fig. 3. Example 4.1: the initial meshes.

Together with the triangle inequality, (3.28) and (3.31), we obtain the estimation
1
h211f = (gl 2 < C (llVeuHLz(we) + osc(e)) . (3.32)
The required estimation now follows form (3.28) and (3.32). [
3.2.3. Adaptive finite element algorithm

The adaptive finite element algorithm is based on the general finite element method for problem (1.1), utilizing the error
estimator ; in (3.10), which is derived from the transmission problem. More specifically, the algorithm is summarized as follows.

Algorithm 3.1 Adaptive finite element algorithm for (1.1).

1: Input: an initial mesh 7°; a constant 0 < < 1; the maximum number of mesh refinements n.
2: Output: the numerical solution »”; a new refined mesh 7.
3: for i =0to n do
Solve the discrete equation (3.1) for the finite element solution uil on T/;
Computing the local error estimation ny(u},) and the total error estimation 5’ (u'é) by (3.11) and (3.10);
if i < n then
Mark a subset 7/ ¢ 77 of elements to refiped such that}/2

DI ACAN YUY
Refine each element T € 7' by longest e Ehisection to obtain a new mesh 77+!.

end if
end for

n.
h?

Remark 3.8. Both the graded finite element method in [3] and the AFEM considered in this paper are based on the transmission
problem. However, the graded finite element method relies on an a priori regularity estimate in a weighted Sobolev space for the
transmission problem, whereas the AFEM is based on an a posteriori error estimator derived from the transmission problem.

Remark 3.9. The comparisons of the AFEMs based on different error estimators are presented in Example 4.3. Numerically, the
FEM error in the H! norm, derived from the a posteriori error estimator with regularization ¢ in (3.5), achieves only a first-order
convergence rate. In contrast, the solution based on # in (3.10), which uses the transmission problem, can achieve arbitrarily
high-order convergence.

Remark 3.10. If the line cracks y, are curved line segments, we can still introduce a residual-based a posteriori error estimator
that does not rely on the regularization techniques by exploring the finite element methods, such as the immersed finite element
method [38], and the cut finite element method [39]. For this investigation, we will leave it to our future work.

4. Numerical examples

We present numerical tests for both the finite element method and the adaptive finite element method to validate our theoretical
results. All the numerical examples are implemented based on the FEALPY package [40].

14
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Fig. 4. Test 1: finite element solutions based on P, polynomials after 4 mesh refinements.

Table 1

Case 1-6 in Example 4.1.
Case number ry r g € u€
Case 1 -1 107 1 Hi(y) HI @ H(@\y)
Case 2 i +1073 1 H%(yl) HI@)n H>(Q\y))
Case 3 0 1 c>m) H™ (@) n H™(Q\r,)
Case 4 Lo 0 H ) HIZ @0 H (@\n)
Case 5 LTS 0 Hi0) HE (@0 H: (@\r)
Case 6 14107 0 HE () H™ (@) n H(@\r))

4.1. Standard finite element method

In this subsection, we present numerical examples to verify the convergence rate of the standard finite element method solving
Eq. (1.1). The quasi-uniform meshes are considered in this subsection, that is, each triangle is divided into four equal triangles in
each mesh refinement. Since the solution u is unknown, we use the following numerical convergence rate

) 1
|“i, - “iz IH‘(.Q)

R = 10g2 ,+1—,, (41)
|”L - ”;ulﬂl(g)

where ui, is the finite element solution on the mesh 7/ obtained after j refinements of the initial triangulation 7.
Example 4.1. In this example, we test the convergence rates of the finite element solutions on quasi-uniform meshes. We consider
problem (1.1) in a square domain 2 = (0, 1)> with one line crack y; = 0,0, for Q, = (0.25,0.5) and Q, = (0.75,0.5). We take the
function g; = ((x —0.25)(0.75 — x))"0 + r, on y,. For different parameters r,, r, in Case 1-6 listed in Table 1, we show the smoothness
of the corresponding function g;, and the regularity for the solution u of problem (1.1) followed by Corollary 2.2.

Test 1. We take the initial mesh as the Union-Jack mesh and the line crack y, pass through the triangles in the mesh as shown in
Fig. 3(a). The convergence rates of the finite element solutions based on P;, P, polynomials are shown in Table 2, and we find that

3
suboptimal convergence rates R =~ 0.5 are obtained for Cases 1—6, which is due to u € H27°(Q), Ve > 0 regardless of the smoothness

15
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Table 2
H' convergence history of finite element solutions in Example 4.1 Test 1 on Union-Jack meshes.
j Py Py
6 7 8 9 4 5 6 7
Casel 0.477 0.485 0.490 0.493 0.484 0.489 0.493 0.495
Case2 0.475 0.486 0.492 0.496 0.493 0.497 0.498 0.499
Case3 0.485 0.491 0.495 0.497 0.495 0.498 0.499 0.499
Case4 0.476 0.487 0.493 0.496 0.499 0.500 0.500 0.500
Case5 0.476 0.487 0.493 0.497 0.503 0.501 0.500 0.500
Case6 0.474 0.487 0.493 0.497 0.505 0.501 0.500 0.500
Table 3
H' convergence history of finite element solutions in Example 4.1 Test 2 on conforming quasi-uniform meshes.
j Py P,
6 7 8 9 5 6 7 8
Casel 0.786 0.786 0.785 0.783 0.792 0.786 0.781 0.777
Case2 0.927 0.937 0.945 0.951 1.045 1.039 1.033 1.028
Case3 0.905 0.916 0.925 0.932 1.000 1.000 1.000 1.000
Case4 0.969 0.979 0.986 0.990 1.253 1.252 1.251 1.251
Case5 0.988 0.994 0.997 0.999 1.500 1.501 1.501 1.501
Case6 0.996 0.999 1.000 1.000 1.865 1.886 1.902 1.914

of g, as indicated by Lemma 2.6, and confirms the error estimate (3.2). The contours of the finite element solution for Cases 1-6
are shown in Fig. 4.
Test 2. We take the initial mesh as Fig. 3(b), whose elements conforming to the line crack y,. The convergence rates of the finite
element solutions based on P;, P, polynomials are shown in Table 3. From the results, we can find that the convergence rates
0.5 < R < 2 depends on the smoothness of the function g, and the degree of the polynomials. The results in Table 3 satisfy the
theoretical expectations shown in Corollary 2.2, and the error estimates (3.3) and (3.4).

The two tests above confirm that the finite element solution on the meshes conforming to the line cracks, namely through the
transmission problem, shows better convergence rates than that on meshes with the line crack passing through the triangles.

4.2. Adaptive finite element method

The parameter 0 in Algorithm 3.1 is taken as # = 0.25 in following examples. On adaptive meshes, the convergence rate of the
a posteriori error estimator ¢ in (3.5) or # in (3.10) for P, polynomials is called quasi-optimal if

Er ]\]—O,Sk7 or g~ N—O,Sk.

Here and in what follows, we abuse the notation N to represent the total number of degrees of freedom.

Example 4.2. We apply the AFEM to Example 4.1 to test the performance of the proposed a posterior error estimator (3.10) and
the corresponding Algorithm 3.1. We take the mesh in Fig. 3(b) as the initial mesh.

The convergence rates of the error estimator n based on P, and P, polynomials are shown in Fig. 6. From the results, we find
that the convergence rates of 5 are quasi-optimal. The contours of the AFEM approximations for different cases are shown in Fig. 5,
from which we can find that these solutions are almost identical to those in Example 4.1 Test 1.

For Cases 1-6, the function g; is sufficiently smooth on y, except near the endpoints Q; and Q, of the line crack y,, so the solution
is more singular near these two endpoints compared with any other regions in the domain. Figs. 7 and 8 show the adaptive meshes
of P, P, approximations, respectively. We can see clearly that the error estimator guide the mesh refinements densely around the
endpoints Q; and Q,. We also find that the more regular the solution is, the less dense the mesh concentrates at the endpoints Q,
and Q,. It is worth noting that Case 3 is an example in [3] solved by the graded finite element method, which showed optimal
convergence rates with mesh refinements concentrating at the singular points Q; and Q, as well.

Example 4.3. We consider problem (1.1) on an L-shaped domain 2 = (~1,1)%\[0, 1)? and take the line cracks Ulﬁ:]y, = 08, with
Q, = (-0.8, —0.2)%\[-0.5, —0.2)> as shown in Fig. 9(a). The function g, = 5on y;,,/ = 1,...,6. We apply the AFEMs based on the
residual-based a posteriori error estimators ¢ in (3.5) and # in (3.10) to solve this problem, respectively. Both AFEMs take the mesh
in Fig. 9(a) as their initial mesh.

Test 1. We first consider the AFEM based on the residual-based a posteriori error estimator ¢ in (3.5). For simplicity of presentation,
we denote y = U[G=lyl, and gly,=8,1=1...6 Instead of directly discretizing (1.1), one discretize its regularized problem, which
is to replace the line Dirac source term ), ,’1 | &9, by its regularized data [20],

g = / g8 (y - x)dy € LX),
Y

16
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Fig. 5. Example 4.2: AFEM solutions based on P, polynomials.
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Fig. 6. Example 4.2: error estimators.

where r is the regularization parameter depending on the local mesh size, and the line Dirac approximation §" of the Dirac
distribution 6 is defined by

#00=5v (%),
2o \r
with suitable choice of y(x) satisfying [20,41,42]
l o=l v (7) = o
where the limit should be understood in the space of Schwartz distributions [43].
Similar to [20], we take r as a constant in actual numerical simulation. More specifically, we set r = 0.05, and

1
w(x) = Z}([fu](xl) “ A-11(x2),

where y(_; ;;(x;) is the characteristic function defined by
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Fig. 7. Example 4.2: adaptive meshes based on P, polynomials.

1, -1<x;<1,
Xi—1(x) = 0

, others.

The contour of the AFEM solution with g" as the source function based on P, polynomials is shown in Fig. 9(b).

Test 2. We then consider the AFEM based on the residual-based a posteriori error estimator # in (3.10), namely, the Algorithm 3.1,
for problem (1.1). The contour of the AFEM solution based on P, polynomials is shown in Fig. 9(c), which is comparable to the
contour in Test 1 as shown in Fig. 9(b).

Since g; € C*(y)), the solution is more singular at the endpoints of line cracks y, and the reentrant corner of the domain. The
adaptive meshes from Test 1 and Test 2 based on P, polynomials are shown in Figs. 10(a) and (b), respectively. From the results,
we find that both meshes are densely refined at the endpoints of the line cracks y; and the reentrant corner of the domain, but the
mesh from Test 1 is also densely refined on the whole line cracks y;, I = 1, ..., 6. Similar adaptive meshes can also be found for Test
1 and Test 2 based on P, polynomials as shown in Fig. 11(a)-(b). These results imply that the error estimator # in (3.10) guides
the mesh refinements effectively by only densely refining the triangles around the endpoints of the line cracks, where the solution
is more singular.

The convergence rates of the error estimator ¢ and # based on P, polynomials are shown in Fig. 10(c). We can find that the
error estimators from both Test 1 and Test 2 are quasi-optimal with & ¥ N~03 and n ~ N~%3. The convergence rates based on P,
polynomials are shown in Fig. 11(c). From the results, we can find that the error estimator y ~ N~! for Test 2 is quasi-optimal, but
the error estimator &(~ N~%) for Test 1 does not achieve the quasi-optimal rate even with more dense refined meshes.

Example 4.4. In this example, we first introduce four intersecting line cracks y;, = 0Q;, I = 1, ..., 4, where 0(0.5,0.5), 0,(0.25,0.5),
0,(0.75,0.5), 05(0.5,0.25) and Q4(0.5,0.75). Here, we consider three types of geometries of £2. Geometry 1 consists of two line cracks
7, and y4; Geometry 2 consists of three line cracks y,, y; and y,; Geometry 3 consists of all line cracks y;, I = 1,...,4. The initial
meshes of Geometry 1-3 are shown in Fig. 13. The functions g; on each line crack y, are taken as the following,

g1 =—8&=-8=8&=-1L (4.2)
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5 (f) Case 6

Fig. 8. Example 4.2: adaptive meshes based on P, polynomials.
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Fig. 9. Example 4.3: Initial mesh and finite element solutions.

The history of the error estimators are reported in Fig. 14, which shows that the convergence rates of the error estimators are
quasi-optimal for all the three cases. Figs. 15-16 and Fig. 12 show the corresponding adaptive mesh refinements and the numerical
solutions, respectively. We can see clearly that the error estimator successfully guide the mesh refinement around the singular points
Q and Q,, I =1,2,3,4, where the solution shows singularity.
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(a) Adaptive mesh of Test 1
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(b) Adaptive mesh of Test 2

Fig. 10. Example 4.3: Meshes and estimators based on P, polynomials.
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Fig. 11. Example 4.3: Meshes and estimators based on P, polynomials.
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Example 4.4: AFEM solutions based on P, polynomials.
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Qa4 Q4 Q4
Q Q> Q Q; 01 Q Q;
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(a) Geometry 1 (b) Geometry 2 (c) Geometry 3

Fig. 13. Example 4.4: initial meshes.
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Fig. 15. Example 4.4: adaptive meshes based on P, polynomials.
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(a) Geometry 1 (b) Geometry 2 (c) Geometry 3

Fig. 16. Example 4.4: adaptive meshes based on P, polynomials.

5. Conclusion

In this work, we propose a novel residual-based a posteriori estimator for elliptic problems with line Dirac delta functions. To
begin our approach, we first identify an equivalent transmission problem that shares the same solution as the original problem and
treats the line cracks as the interfaces. This transmission problem for our case is an interface problem, which has a continuous
solution and nonzero flux jumps [d,u] = g; on the line cracks y;,. The proposed a posteriori estimator, relying on meshes conforming
to the line cracks, consists of element residuals with zero source and edge residuals involving flux jumps g;. We derive the reliability
and efficiency of the a posteriori estimator with the main focus on handling the estimates of the edge residuals. An AFEM is given
based on the proposed a posteriori estimator and the bisection refinement method. Our method has some remarkable achievements.
We identify the regularities of the original problem in the whole domain and the domain excluding the line cracks. The proposed
AFEM can achieve the quasi-optimal convergence rate for both low order and high order approximations. The adaptive meshes are
primarily refined at some singular points of the domain, namely, the endpoints of the line cracks and the singular corners of the
domain.

Although our investigation currently focuses on line cracks, it has potential to expand the proposed method to more complex
cases. In particular, it holds potential for 2D elliptic problems with curved cracks and 3D elliptic problems with surface interfaces
strictly contained within the domain. To explore these extensions, we will need to develop new mathematical tools, and it will be
the focus of our future work.
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