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Comprehensive two-dimensional gas chromatography coupled with mass spectrometry
(GC�GC-MS) has been used to analyze multiple samples in a metabolomics study. However,

due to some uncontrollable experimental conditions, such as the di®erences in temperature or

pressure, matrix e®ects on samples and stationary phase degradation, there is always a shift of

retention times in the two GC columns between samples. In order to correct the retention time
shifts in GC�GC-MS, the peak alignment is a crucial data analysis step to recognize the peaks

generated by the same metabolite in di®erent samples. Two approaches have been developed for

GC�GC-MS data alignment: pro¯le alignment and peak matching alignment. However, these
existing alignment methods are all based on a local alignment, resulting that a peak may not be

correctly aligned in a dense chromatographic region where many peaks are present in a small

region. False alignment will result in false discovery in the downstream statistical analysis. We,

therefore, develop a global comparison-based peak alignment method using point matching
algorithm (PMA-PA) for both homogeneous and heterogeneous data. The developed algorithm

PMA-PA ¯rst extracts feature points (peaks) in the chromatography and then searches globally

the matching peaks in the consecutive chromatography by adopting the projection of rigid and

nonrigid transformation. PMA-PA is further applied to two real experimental data sets,
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showing that PMA-PA is a promising peak alignment algorithm for both homogenous and
heterogeneous data in terms of F1 score, although it uses only peak location information.

Keywords: GC-MS; metabolomics; peak alignment; point matching algorithm.

1. Introduction

Multiple samples are usually analyzed in a metabolomics study to obtain a better

statistical power, by assessing the biological variation between samples as well as the

technical variation generated during sample analysis. Due to some uncontrollable

experimental conditions, such as the di®erences in temperature or pressure, matrix

e®ects on samples, and stationary phase degradation, there is always a shift of

retention times in the two gas chromatography (GC) columns between samples.

Therefore, the peak alignment is a crucial data analysis step to recognize the peaks

generated by the same metabolite in di®erent samples. In order to correct the re-

tention time shifts in the two-dimensional GC system, two approaches have been

developed to align comprehensive two-dimensional GC coupled with mass spec-

trometry (GC�GC-MS) data: pro¯le alignment and peak matching alignment.

Four pro¯le alignment methods have been reported using the two-dimensional re-

tention times: the rank annihilationmethod,1 a correlation-optimized shiftingmethod,2 a

piecewise retention time alignment,3 and a two-dimensional correlation optimized

warping.4Aligningmetabolite peaks solely based on the two-dimensional retention times

may introduce a high rate of false-positive alignment because some metabolites with

similar chemical functional groups have similar retention times in both GC dimensions.

For this reason, four peak matching methods, MSort,5 DISCO,6 mSPA,7 and SWPA 8

were developed using both the two-dimensional retention times and mass spectrum

similarity for alignment. The main di®erence between MSort/mSPA and DISCO/

SWPA approaches is that DISCO and SWPA can be applied to both homogeneous and

heterogeneous data while MSort and mSPA are only able to align homogeneous data.

The homogeneous data mean that all samples were analyzed under the identical exper-

iment conditions and the heterogeneous data refer that experiment data were acquired

under di®erent experiment conditions.However, these existing alignmentmethods are all

based on a local alignment, resulting that a peak is likely to be not correctly aligned in a

dense chromatographic region where many peaks are present in a small region. False

alignment will result in false discovery in the downstream statistical analysis.

Point matching algorithms (PMAs) are often used in the domains of computer

vision and medical imaging. It ¯rst extracts feature points in the image and then

searches globally the matching points in the consecutive images by adopting the

projection of rigid and nonrigid transformation. There are several versions of

PMA including the iterated closest point (ICP) algorithm,9 robust point matching

(RPM)10 the thin-plate spline RPM (TPS-RPM),11 coherent point drift (CPD),12 etc.

The CPD method has two versions: rigid and nonrigid. The rigid CPD is an iterative

method based onGaussianmixturemodel (GMM),while the nonrigidCPDregularizes

the displacement ¯eld between the point sets following the motion coherence theory,
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optimally computing the transformation. A key advantage of CPD over other PMA

methods is the ability to dramatically reduce computational complexity and expense.

To resolve the aforementioned challenges on existing peak alignment algorithms, we

develop a global comparison based peak alignmentmethod using PMA (PMA-PA). The

developed PMA-PA algorithm employs the CPD method. We choose the CPD method

because of the following properties: (i) robustness to degradations such as outliers and

missing points, (ii) ability to dealwith high dimensional data e±ciently and (iii) ability to

reduce computational complexity and expense. Note that outliers are the points (peaks)

that have no corresponding points (peaks) to align due to missing points in a corre-

sponding data set. That is, outliers and missing points are correspondingly de¯ned. The

proposed PMA-PA algorithm can further deal with both homogeneous and heteroge-

neous data. In this study, we particularly focus on examining the feasibility and ability of

PMA-PA in relation to peak alignment using the two-dimensional retention times only.

2. Materials and Methods

2.1. GC�GC-MS data

A mixture of 76 compound standards (8270 MegaMix, Restek Corp., Bellefonte,

PA), C7–C40 saturated alkanes (Sigma-Aldrich Corp., St. Louis, MO) and a deu-

terated six component semi-volatiles internal standard (ISTDF) mixture (Restek

Corp., Bellefonte, PA) at a concentration of 2.5�g/mL were analyzed on a LECO

Pegasus four-dimensional (4D) GC�GC-MS instrument (LECO Corporation, St.

Joseph, MI, USA) equipped with a cryogenic modulator. The GC�GC-MS analyses

were repeated 10, 2 and 4 times under three di®erent temperatures, 5�C/min, 7�C/
min, and 10�C/min, respectively, resulting in a total of 16 data sets. All GC�GC-MS

analyses were performed on a LECO Pegasus 4D time-of-°ight mass spectrometer

(TOF-MS) with a Gerstel MPS2 autosampler. The Pegasus 4D GC�GC-MS in-

strument was equipped with an Agilent 7890 gas chromatograph featuring a LECO

two-stage cryogenic modulator and secondary oven. A 30 m � 0.25mm i.d. �
0.25�m ¯lm thickness, Rxi-5ms GC capillary column (Restek Corp., Bellefonte, PA)

was used as the primary column for the GC�GC-MS analysis. A second GC column

of 1.2m � 0.10mm i.d. � 0.10�m ¯lm thickness, BPX-50 (SGE Incorporated,

Austin, TX) was placed inside the secondary GC oven after the thermal modulator.

The helium carrier gas °ow rate was set to 1.0mL/min at a corrected constant °ow

via pressure ramps. A 1 �L liquid sample was injected into the liner using the splitless

mode with the injection port temperature set at 260�C. The primary column tem-

perature was programmed with an initial temperature of 60�C for 0.5min and then

ramped at a variable temperature gradient to 315�C. The secondary column tem-

perature program was set to an initial temperature of 65�C for 0.5min and then also

ramped at the same temperature gradient employed in the ¯rst column to 320�C
accordingly. The thermal modulator was set to +20�C relative to the primary oven,

and a modulation time of 5 s was used. The MS mass range was 10–750m/z with an

acquisition rate of 150 spectra per second. The ion source chamber was set at 230�C
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with the MS transfer line temperature set to 260�C, and the detector voltage was

1800V with electron energy of 70 eV. These data sets were previously used for de-

velopment of DISCO,6 mSPA,7 and SWPA8 algorithms.

2.2. Sketch of CPD algorithm

As mentioned above, PMA is a process of ¯nding a spatial transformation that aligns

two point sets. Let fM ;Sg be two point sets in a ¯nite-dimensional vector space Rd,

which contain l and n points, respectively, i.e. jM j ¼ l,M � Rd, jSj ¼ n and S � Rd.

Note that d ¼ 2 in this study. A key procedure of PMA is to ¯nd a transformation T

to be applied to the moving `model' point set M such that the di®erence between M

and the static `scene' set S is minimized, i.e. to ¯nd Tmin:

distðTminðMÞ;SÞ ¼ min
T

fdistðT ðMÞ;SÞg: ð1Þ

In this work, we apply the CPD algorithm for both rigid and nonrigid point set

registrations, introduced by Myronenko and Song.12 CPD considers the alignment of

two point sets, `model' and `scene' sets, as a probability density estimation problem

and applies GMMs to both point sets. Then it ¯ts GMM centroids representing the

`model' set to the `scene' set by maximizing the likelihood, and aligns two point sets

using the posterior probabilities of the GMM components. By doing so, it preserves

the topological structure of the points sets during the alignment, which is a critical

characteristic of CPD. In order to account for outliers and missing points, an extra

distribution term, such as large Gaussian15 or uniform distribution,16 is included to

the GMM components. In the CPD method, a uniform distribution is added to the

mixture model to account for outliers and missing points. The GMM probability

density function of CPD is as follows:

pðxÞ ¼ !
XM

m¼1

1

M
pðxjmÞ þ ð1� !Þ 1

N
; ð2Þ

where pðxjmÞ ¼ 1
ð2�� 2Þ d=2 exp� jjx�ymjj 2

2�2 , and ! is a weight between 0 and 1. Then

CPD reparametrizes the GMM centroid location by a set of parameters � and !, and

¯ts the two density functions together by maximizing the likelihood, or equivalently,

by minimizing the negative log-likelihood function

Eð�; !2Þ ¼ �
XN

n¼1

logðpðxnjmÞÞ ð3Þ

under the assumption that the data are independently and identically distributed.

To estimate � and !, the expectation–maximization (EM) algorithm is used.14

The initial �0 and !0 are guessed and plugged into the log likelihood function,

Eð�0; !2
0Þ in the E-step. Then, in the M-step, according to the Bayes' Theorem,

the new parameters �1 and !1 are found by minimizing the expectation of the
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log-likelihood function

Q ¼ �
XN

n¼1

XM

m¼1

P0ðmjxnÞ logðp1ðxnjmÞÞ ð4Þ

where the indices correspond to the indices of the parameters. In the rigid case, CPD

imposes the coherence constraint by reparametrization of GMM centroid locations

with rigid parameters and derive a closed form solution of the maximization step of

the iteration. In the nonrigid case, it imposes the coherence constraint by regularizing

the displacement ¯eld and using the variational calculus to derive the optimal

transformation. For more details, we refer the reader to the work of Myronenko and

Song.12

2.3. Z-score standardization

The domains of the ¯rst and the second dimension retention times in GC�GC-MS

data are di®erent from each other. For instance, the ¯rst dimension retention time

ranges from 300s to 4000s, while the second dimension retention time ranges 0s to 5s.

This discrepancy often hampers accurate peak alignment, in particular, for the

heterogeneous case. To resolve this di±culty, we use the z-score that is a common

method to standardize a variable. It is de¯ned as

Xz ¼
X � EðXÞ

�ðAÞ ; ð5Þ

where EðXÞ and �ðAÞ are the expectation and its standard deviation of the variable

X, respectively. We apply z-score to precondition the data sets.

2.4. PMA-PA algorithm

The developed PMA-PA algorithm aligns the two sets of peaks generated from two

GC�GC-MS experiments by the CPD method. However, the CPD method ¯nds the

transformation of the `model' data set only, resulting that the aligned results are not

consistent with the choice of the `model' data set. Therefore, to produce the con-

sistent aligned peak pairs regardless of the choice of the `model' data set, the PMA-

PA performs the CPD alignment two times by switching the role of the `model' and

the `scene' data sets. Then the consensus is carried out to preserve the peak pairs only

that are present in both CPD-based aligned lists.

2.5. Performance evaluation

To re°ect the real systemic biases generated from GC�GC-MS experiments, we

employed the real experiment data sets and used the compound names identi¯ed at

each data set to evaluate the performance of the developed PMA-PA algorithms.

That is, if the aligned peaks (points) have the same compound name, we consider this

matching as a positive matching pair. If not, this matching will be considered as a

negative matching pair.
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In particular, as described before, the ¯rst data set of 16 experiments was gen-

erated by the mixture of compound standards, meaning that these compounds were

arti¯cially introduced in the samples. As shown in Fig. 1, most of these compound

standards were detected and correctly identi¯ed from each experimental data set.

Furthermore, to re°ect the heterogeneous cases, the experiments were carried out

under three di®erent temperatures, 5�C/min, 7�C/min, and 10�C/min. The peak

alignments within the same temperatures represent the homogeneous alignment,

while those between the di®erent temperatures represent the heterogenous align-

ment. In addition to the data acquired from mixture of compound standards, the real

biological data were used to re°ect a dense chromatographic region where many

peaks are present in a small region as can be seen in Fig. 2. Since these data were
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Fig. 1. Chromatograms of the ¯rst spiked-in data set. A1–A10: under 5�C/min, B1–B2: under 7�C/min,
and C1–C4: under 10�C/min. The numbers indicate the number of compounds identi¯ed and the rug plot

represents the density of each retention time.
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carried out under the same experimental conditions, the peak alignments among

these biological data re°ect the homogeneous alignment.

Suppose that there are l points in the `model' set M ¼ fm1;m2; . . . ;mlg, and
n points in the `scene' set S ¼ fs1; s2; . . . ; sng, with u positive matching pairs

fðmi1 ; sj1Þ; ðmi2 ; sj2Þ; . . . ; ðmiu ; sjuÞg, where u � minðl;nÞ. If a certain point matching

method is applied to the two data sets,M and S, and vmatched pairs are found, then

the true positive rate (TPR) and predictive positive value (PPV) are de¯ned as

follows:

TPR ¼ TP

u
; PPV ¼ TP

v
; ð6Þ
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Fig. 2. Chromatograms of ¯ve GC�GC-MS data set acquired from metabolite extracts of mouse livers.
The numbers indicate the number of compounds identi¯ed and the rug plot represents the density of each

retention time.
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where TP is the number of positive matching pairs that were aligned as positive (true

positive) and is less than or equal to minðu; vÞ. The F1 score is de¯ned as the

harmonic average of TPR and PPV, i.e.

F1 score ¼ 2 � TPR � PPV
TPR þ PPV

: ð7Þ

2.6. Tuning parameters

The CPD method has two types of transformation: rigid and nonrigid transforma-

tion. The rigid transformation requires the three tuning parameters: maximum step,

tolerance, and ! 2 ½0; 1Þ, while the nonrigid transformation has two more tuning

parameters in addition to those of the rigid transformation: maximum step, toler-

ance, ! 2 ½0; 1Þ, � 2 ½1; 5� and � 2 ½1; 5�. The ¯rst two tuning parameters, maximum

step and tolerance, control when to stop the EM iteration. The third parameter !

plays a role in preconditioning the amount of the potential outliers/missing points in

the data sets. As can be seen in Eq. (2), the smaller !, the more outliers/missing

points because the uniform distribution will have more weights as the ! decreases.

The parameter � in the nonrigid transformation represents the width of smoothing

Gaussian ¯lter,13 i.e. the less �, the less oscillations (high frequency waves), resulting

in the transformation function smoother. The last parameter � tunes the weight of

the penalty term, i.e. as � decreases, the likelihood function becomes dominated,

while as � increases, the objective function becomes smoother. According to our

application to real experiment data sets, the tuning parameters, maximum step and

tolerance, barely a®ect the result. However, the parameter ! plays a critical role in

improving the performance of both rigid and nonrigid methods, and � and � need

only for the nonrigid algorithm. We also consider the two more factors that a®ect the

performance of peak alignment, which are the z-score standardization and the rigid/

nonrigid transformations.

In case of the rigid transformation, we explore the e®ect of ! on the peak align-

ment by taking 10 points by dividing the interval ½0; 0:999� into nine equal-width

subintervals. Similarly, in case of the nonrigid transformation, we evaluate the in-

°uence of !, � and � on the peak alignment by taking 10 cut-points for each interval

of the three tuning parameters.

3. Implementations

3.1. Homogeneous cases

The developed PMA-PA algorithms are applied to the homogeneous data sets

A1–A10 and the performance results are depicted in Fig. 3. The rigid method

without z-score is the most sensitive to the tuning parameter !, while the nonrigid

without z-score has little in°uence on the change of !. The methods with z-score

show the similar behavior in regard to !. The best performance occurs when the rigid

B. Deng et al.

1650032-8



without z-score is applied with ! of 0 in terms of the PPV-TPR plot. Note that the

best performance will occur when the point is located in the top right-most area in

the PPV-TPR plot.

The nonrigid method has two more tuning parameters, � and �. Both plots

(Figs. 3(b) and 3(c)) clearly show that there is no e®ect of � and � on the method

without z-score, but their in°uence on the method with z-score is not ignorable. The

nonrigid method without z-score outperforms that with z-score when � and � are

considered.

The overall performance in homogeneous cases is displayed in Fig. 3(d) in terms of

F1 score. As shown in other ¯gures, the variance of the nonrigid method without

z-score is the smallest among others and the rigid method without z-score has the
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Fig. 3. Homogeneous case using the data sets A1–A10.
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largest variance. The ANOVA followed by Tukey's post hoc tests demonstrates that

the nonrigid without z-score signi¯cantly achieves the highest mean F1 score com-

pared to other methods as shown in Table 1. The cases with the maximum F1 score

are further shown in Table 2. Interestingly, the maximum F1 score occurs when the

rigid without z-score is used with ! ¼ 0, although it is not signi¯cantly di®erent from

when the nonrigid without z-score is used with ! ¼ 0, � ¼ 5 and � ¼ 2:2.

3.2. Heterogeneous cases

The results of the heterogeneous cases are shown in Fig. 4. In this case, we aligned

two sets of experiment data that were generated in di®erent temperatures, i.e. (A and

B), (A and C) and (B and C), using PMA-DA.

Table 1. The overall mean F1 score for each of pairwise peak alignment results.

M z N F1 score N F1 score N F1 score

Homogeneous Heterogeneous Mice

NR No 54450 0.9134 (0.0002) 48400 0.0173 (0.0001) 12100 0.4134 (0.0005)
NR Yes 54450 0.7471 (0.0004) 48400 0.5957 (0.0005) 12100 0.2105 (0.0008)

R No 450 0.7305 (0.0114) 400 0.0143 (0.0007) 100 0.1819 (0.0201)

R Yes 450 0.7492 (0.0033) 400 0.5338 (0.0045) 100 0.1860 (0.0066)

Note: `M ' stands for `Method'; `NR' and `R' represent the nonrigid and rigid transformations,

respectively; `z' stands for the z-score standardization; `N' is the total number of pairs consid-
ered; the numbers in parentheses represent the standard error.

Table 2. The cases with the maximum F1 score for each of pairwise peak alignment results.

M z N ! � � TPR PPV F1 score

Homogeneous

NR No 45 0 5 2.2 0.9061 (0.0065) 0.9688 (0.0039) 0.9361 (0.0049)

NR Yes 45 0.999 1.8 1 0.8045 (0.0130) 0.9278 (0.0070) 0.8609 (0.0104)
R No 45 0 0.9101 (0.0066) 0.9686 (0.0041) 0.9382 (0.0052)

R Yes 45 0.999 0.8108 (0.0167) 0.9049 (0.0109) 0.8543 (0.0142)

Heterogeneous

NR No 40 0.999 1 1 0.0192 (0.0029) 0.0446 (0.0070) 0.0268 (0.0041)

NR Yes 40 0.889 2.2 5 0.5765 (0.0094) 0.9136 (0.0044) 0.7057 (0.0081)
R No 40 0.111 0.0144 (0.0016) 0.0410 (0.0044) 0.0212 (0.0023)

R Yes 40 0.889 0.4527 (0.0104) 0.7776 (0.0128) 0.5717 (0.0115)

Mice

NR No 10 0.999 1 1 0.5222 (0.0217) 0.4515 (0.0142) 0.4840 (0.0172)

NR Yes 10 0.555 4.6 2.6 0.2261 (0.0065) 0.4593 (0.0129) 0.3028 (0.0082)
R No 10 0.778 0.2230 (0.0725) 0.1948 (0.0612) 0.2078 (0.0663)

R Yes 10 0.999 0.3186 (0.0363) 0.2965 (0.0268) 0.3068 (0.0311)

Note: `M' stands for `Method'; `NR' and `R' represent the nonrigid and rigid transformations,

respectively; `z' stands for the z-score standardization; `N' is the total number of pairs consid-

ered; The numbers in parentheses represent the standard error.
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As expected, we can see that its performance is quite di®erent from that of the

homogeneous cases. Although the e®ect of ! is little to the methods without z-score

similar to the homogeneous cases, the peak alignment performs much better with the

methods with z-score. Likewise, the e®ects of � and � are relatively large in the

nonrigid method with z-score, but it outperforms the nonrigid method without

z-score in terms of the PPV-TPR plot.

As can be seen in Fig. 4(d), the in°uence of tuning parameters on peak alignment

is smaller without z-score, but the overall performance is much better with z-score

than that without z-score. In terms of the overall mean F1 score (see Table 1), both

methods with z-score achieve comparable peak alignments, but the one-way

ANOVA with Tukey's post hoc analysis con¯rms that the nonrigid method with
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Fig. 4. Heterogeneous case using the data sets A1–A10:B1–B2:C1–C4.
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z-score has signi¯cantly higher mean of F1 scores than others. The maximum F1

score is observed when the nonrigid method with z-score is applied with ! ¼ 0:889,

� ¼ 2:2, and � ¼ 5, as shown in Table 2.

3.3. Analysis of biological data

The real biological data sets (D1–D5) are more dense than the data sets A, B and C,

as displayed in Fig. 2. The developed algorithms are applied to these biological data

sets and its results are displayed in Fig. 5.

Similar to the previous cases, the nonrigid method without z-score shows the least

sensitive to the tuning parameters. In case of !, the rigid method with z-score can
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Fig. 5. Real biological data using the data sets D1–D5.
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surpass the PPV of the nonrigid method without z-score, but its TPR is much less

than that of the nonrigid method without z-score regardless of the cut-o® values of !.

The e®ect of both � and � is signi¯cant for the nonrigid method with z-score. In both

tuning parameters, the PPV of the method with z-score is larger than that of the

method without z-score, while the TPR without z-score is larger than that with

z-score.

The overall F1 scores are shown in Fig. 5(d). Although the absolute F1 scores are

less than those of homogeneous cases (see Fig. 3(d)), the general trends are similar to

each other. Namely, the rigid method without z-score has the largest variation, the

nonrigid without z-score has the highest mean F1 score and other methods have

the similar mean F1 scores to each other (see Table 1).

The one-way ANOVA and Tukey's post hoc analyses demonstrate that the

nonrigid without z-score signi¯cantly achieves the highest mean F1 score among

the four methods similar to the homogeneous cases (see Table 1). As can be seen in

Table 2, the maximum F1 score occurs when the nonrigid method without z-score is

used with ! ¼ 0:999, � ¼ 1 and � ¼ 1.

4. Concluding Remarks

A new peak alignment method, PMA-PA, is developed using PMAs in order to deal

with both homogeneous and heterogeneous GC�GC-MS data.

According to the application to the data sets A, B and C, the z-score standard-

ization is necessary for heterogeneous cases but not for homogeneous cases in order to

achieve the highest performance in peak alignment (Table 2), as we expected. The

overall mean and maximum F1 scores demonstrate that the peak alignment will

achieve the highest performance when the nonrigid method is utilized for both ho-

mogeneous and heterogenous data. This implies that the retention time shift is

nonlinear. Note that, although the maximum F1 score is observed when the rigid

method is used in homogeneous cases, the di®erence with the nonrigid method is not

signi¯cant and further the overall mean F1 score of the nonrigid method is signi¯-

cantly higher than that of the rigid method (Table 1).

The developed algorithm was also validated using real biological data sets, which

is a homogeneous case. This application further con¯rms that the nonrigid method

without z-score performs the best among four methods in terms of the overall mean

and maximum F1 scores. However, its optimal tuning parameters are di®erent from

those with the homogeneous data A. The optimal value of ! was larger with the data

set D (! ¼ 0:999) than that with the data set A (! ¼ 0). In other words, the ho-

mogeneous data set A was aligned only based on a uniform distribution, while the

biological homogeneous data set D was aligned dominantly based on GMM (see

Eq. (2)). This is because the data set A has little shift in retention time. On the other

hand, the optimal values of � and � are smaller with the data set D than those with

the data set A (Table 2). This is because the data set D is more dense than the data

set A.
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On the basis of an anonymous reviewers suggestion, we also performed the PMA-

PA using the one-way approach. In that case, instead of two PMA runs for the

developed PMA-PA (i.e. two-way PMA-PA approach), we performed one PMA run

and then used only the one-to-one matchings for the peak alignment. All the results

of the one-way PMA-PA approaches are in Tables 3 and 4. As can be seen in Tables

1–4, the overall trends of the one-way PMA-PA are very similar to those of the two-

way PMA-PA, but the overall F1 scores are higher in the two-way PMA-PA than in

the one-way PMA-PA.

The z-score standardization can be considered as a nonrigid transformation

so that one can expect that PMA-PA with nonrigid transformation would not be

a®ected by z-score standardization, while PMA-PA with rigid transformation would

Table 4. The cases with the maximum F1 score for each of pairwise peak alignment results using
the one-way approach.

M z N ! � � TPR PPV F1 score

Homogeneous

NR No 45 0 5 2.2 0.8453 (0.0087) 0.9719 (0.0041) 0.9035 (0.0062)

NR Yes 45 0.999 1.8 1 0.7637 (0.0165) 0.9539 (0.0068) 0.8453 (0.0121)
R No 45 0 0.8484 (0.0087) 0.9713 (0.0039) 0.9050 (0.0062)

R Yes 45 0.999 0.7546 (0.0178) 0.9558 (0.0063) 0.8397 (0.0134)

Heterogeneous

NR No 40 0.999 1 1 0.0095 (0.0022) 0.0386 (0.0089) 0.0152 (0.0035)

NR Yes 40 0.889 2.6 4.6 0.6077 (0.0097) 0.9006 (0.0082) 0.7249 (0.0090)
R No 40 0 0.0368 (0.0034) 0.1133 (0.0097) 0.0554 (0.0050)

R Yes 40 0.999 0.4344 (0.0127) 0.7417 (0.0161) 0.5471 (0.0142)

Mice

NR No 10 0.999 1 1 0.3615 (0.0157) 0.4422 (0.0135) 0.3974 (0.0145)

NR Yes 10 0.999 5 5 0.2188 (0.0209) 0.2979 (0.0214) 0.2517 (0.0215)
R No 10 0.111 0.1581 (0.0476) 0.2271 (0.0688) 0.1863 (0.0563)

R Yes 10 0.999 0.2304 (0.0198) 0.3888 (0.0370) 0.2891 (0.0257)

Note: `M' stands for `Method'; `NR' and `R' represent the nonrigid and rigid transformations,

respectively; `z' stands for the z-score standardization; `N' is the total number of pairs consid-

ered; the numbers in parentheses represent the standard error.

Table 3. The overall mean F1 score for each of pairwise peak alignment results using the one-

way approach.

M z N F1 score N F1 score N F1 score

Homogeneous Heterogeneous Mice

NR No 54450 0.8860 (0.0002) 48400 0.0088 (0.0001) 12100 0.3522 (0.0004)
NR Yes 54450 0.6525 (0.0004) 48400 0.5740 (0.0005) 12100 0.1690 (0.0007)

R No 450 0.7288 (0.0102) 400 0.0121 (0.0010) 100 0.1635 (0.0173)

R Yes 450 0.6521 (0.0043) 400 0.4970 (0.0047) 100 0.1504 (0.0080)

Note: `M ' stands for `Method'; `NR' and `R' represent the nonrigid and rigid transformations,

respectively; `z' stands for the z-score standardization; `N' is the total number of pairs consid-

ered; the numbers in parentheses represent the standard error.
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be. However, as shown in Table 2, the z-score standardization signi¯cantly con-

tributes on the performances of both nonrigid and rigid transformations in case of

heterogeneous data. On the other hand, the parameter estimation in PMA is carried

out by EM algorithms which are known to be local optimization. One of dis-

advantages on local optimization is that the initial guess or starting value is critical

and can greatly a®ect the outcome of the optimization. Thus, due to the nature of the

data, the heterogeneous case will require a good initial guess enough to ¯nd a solu-

tion. Indeed, both nonrigid and rigid transformations yielded poor performance

without z-score standardization, while the performance is dramatically improved

with z-score standardization. In that regard, it seems that the z-score standardiza-

tion provides a good initial guess for the heterogeneous data sets, resulting in a better

performance in peak alignment.

All existing approaches use either both the peak (location) distance and the mass

spectral similarities or only the mass spectral similarities, while the developed ap-

proach uses the peak distance only. For this reason, there is no available approach to

compare with the proposed PMA-PA, except for one of the methods carried out in

Ref. 7, which is PAD with Euclidean distance but only for homogeneous cases.

Comparing with the results of PAD available in the Supplementary Data II of Ref. 7,

PMA-PA performs better than PAD for both homogeneous and mice data sets

(PMA-PA versus PAD: 93.61% versus 92.53% for homogeneous and 48.40% versus

47.28% for mice).

In conclusion, our applications to experiment data demonstrate that the points

matching algorithm is promising for the peak alignment for both homogenous and

heterogeneous data. In particular, in this study, we used only peak position or lo-

cation information for the peak alignment di®erent from the existing methods that

use either both the peak (location) distance and the mass spectral similarities or only

the mass spectral similarities. Although the peak location includes the less infor-

mation than the mass spectral similarity, the developed PMA-based alignment

achieves the comparable performances in terms of F1 scores.6–8 In addition, this

study shows that the nonrigid method is an optimal choice regardless of whether the

data are homogeneous or heterogeneous.
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