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Abstract We develop an a posteriori error estimate for mixed boundary value prob-
lems of the form (−�+V )u = f , where the potential V may possess inverse-square
singularities at finitely many points in the domain. We prove that our error estimate
can be efficiently computed and is asymptotically identical to the actual error in the
energy norm, on a family of geometrically graded meshes appropriate for singular
solutions of such problems. Therefore, our estimate can be used for a practical stop-
ping criterion. A variety of numerical experiments support our theoretical results. We
also offer a direct convergence and effectivity comparison between the geometrically-
graded meshes, which are based on a priori knowledge of possible singularities in
the solution, and adaptively refined meshes driven by local error indicators associated
with our a posteriori error estimate.
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708 H. Li, J. S. Ovall

1 Introduction

We consider mixed boundary value problems associated with the Schrödinger operator

Hu := (−�+ V )u

in a 2D polygonal domain�, where the potential function V may have singularities of
the type |x − yi |−2 for a finite set of points {yi } ⊂ �—this is known as a centrifugal,
or inverse square, potential. Such potentials are significant in quantum mechanics
(for example, see [26,27,43,52]), and require special analysis for well-posedness and
regularity results as well as for the development of effective numerical algorithms.
Note that due to the singular potential, this equation is naturally studied in weighted
Sobolev spaces instead of the usual Sobolev space H1 (for example, see [25,26,32,41]
and references therein).

The non-smooth behavior of the potential near a singular point yi may also cause
local singularities in the solution. These singularities, together with those due to corners
in the domain and changes in the type of boundary condition, must be given special
attention in order to achieve desired finite element approximation properties. Based
on a priori estimates in suitable weighted Sobolev spaces, a systematic construction
of graded meshes has been proposed in [41] to yield finite element solutions with the
optimal order of convergence in the presence of such singularities in the solution (see
[33] for a similar treatment in 3D). Such graded meshes have also proven to be effective
in other situations in which singular solutions are known to arise [7,16,17,39,46].
These graded meshes are generated using a recursive process, giving rise to families
of nested shape-regular triangulations; the constant of shape-regularity for the family
is controlled by the strength of the grading, which is fixed for a given problem.

We are aware of no contributions concerning a posteriori error estimates for such
problems. This may be due to the fact that a posteriori error estimates are most com-
monly associated with automatic adaptive refinement driven by related local error
indicators, whereas those accustomed to working in weighted Sobolev spaces gener-
ally prefer graded meshes which can be more closely tied to the weighting in these
spaces. However, regardless of the general meshing approach, any practical algorithm
should have an efficient and reliable mechanism for determining when an approxi-
mation adequately resolves the solution. The singularity(ies) in the potential V pose
challenges in selection and analysis of appropriate error estimates, so error estimates
developed for standard elliptic problems may not work at all without significant modi-
fication, or will at least require a different sort of analysis. For example, residual-based
error estimates for standard elliptic problems (cf. [2]) involve the L2-norm of the strong
form of the residual on each element, but in this case that residual is not in L2 near
the singular points of V . One also quickly sees that the popular gradient recovery
schemes, such as those surveyed in [53], are not designed to address the term V u.

Error estimates of hierarchical type, which are based on the computation of an
approximate error function in an auxiliary space, have a long and successful history
in finite element computations [4,8,11,12,15,22,31,45], at least for standard elliptic
problems. Often in practice, such an approximate error function can be used quite
flexibly in terms of error estimation in a variety of measures, and for adaptivity with
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A posteriori error estimation of hierarchical type 709

respect to a variety of objectives [34,44,45]. We here analyze a hierarchical error
estimate, arguing that it is asymptotically identical to the actual error in the energy norm

|||εn|||
|||u − un||| → 1. (1)

Because the approximate error function εn is a global Galerkin projection of the error
u −un onto an auxiliary space, we argue that the system for computing this projection
is well-conditioned—in contrast to that for computing un . As a matter of practical
interest, we also include numerical results for adaptively refined meshes based on
local error indicators associated with our a posteriori error estimates, demonstrat-
ing that they provide very similar performance to the graded meshes for which we
have proven asymptotic exactness. The adaptive algorithm used for these experiments
uses the Hessian of εn as part of a more aggressive refinement scheme than is often
employed in other codes, so we provide numerical evidence that the Hessian of εn

approximates of the Hessian of u.
To simplify the presentation, we shall focus on the linear finite element approxima-

tion of a model problem (2) in which V possesses a single inverse-square singularity at
the origin. However, we take care to outline the arguments in such a way that extensions
to multiple singularities should be obvious, and we highlight certain aspects of these
extensions in several places. Some of the results extend quite readily to higher-order
elements as well, but others would require further technical arguments and practical
implementation issues which we choose to pursue in later work. Note that our a poste-
riori estimates naturally hold on optimal graded meshes for the usual geometric corner
singularities in the solution, which is the special case when the potential function V
is smooth.

The rest of the paper is organized as follows. In Sect. 2, we describe our model prob-
lem and the necessary function spaces and norms required to properly discuss well-
posedness and regularity. Section 3 includes basic geometric properties of the finite
element spaces and related estimates which lead to the aforementioned spectral equiv-
alence result (Theorem 3.6), as well as the definition of the graded meshes and optimal-
order a priori convergence rates even in the case of solutions with singularities (Theo-
rem 3.9). Section 4 contains the proof of (1), which exploits mesh symmetries through-
out much of the domain for essential super-convergence results. A variety of numerical
experiments, which convincingly illustrate our convergence and effectivity assertions,
are given in Sect. 5. Also in this section are numerical comparisons between the graded
meshes and adaptive meshes, as well as a few results on how the approximate error
function can be used to recover higher-order derivative information about the solution.

2 The model problem and basic definitions

2.1 The model problem

Given a bounded domain� ⊂ R
2, which we assume to be polygonal for convenience,

we consider the model problem of finding u in a suitable function space H ⊂ H1(�)

such that
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710 H. Li, J. S. Ovall

(−�+ δr−2)u = f in �, u = 0 on ∂�D, ∂νu = 0 on ∂�N (2)

in a weak sense. Here δ > 0 is constant, and r = r(x) = |x | is the distance to the
origin, which is assumed to be in �. The boundary ∂� is disjointly partitioned into
Dirichlet and Neumann portions, ∂�D and ∂�N , with the assumption that Neumann
boundary conditions are not allowed on adjacent edges of a vertex on ∂� unless that
vertex is the origin.

We use standard notation for (real) Hilbert spaces, norms and semi-norms

Hm(�) = {v ∈ L2(�) : ∂αv ∈ L2(�) for all |α| ≤ m},

‖v‖m =
⎛
⎝ ∑

|α|≤m

‖∂αv‖2
L2(�)

⎞
⎠

1/2

, |v|m =
⎛
⎝ ∑

|α|=m

‖∂αv‖2
L2(�)

⎞
⎠

1/2

,

with multi-index α = (α1, α2) ∈ Z
2≥0 and |α| = α1 + α2, where ‖v‖2

L2(�)
= ‖v‖2

0 =∫
�
v2 dx . We also use the notation ‖v‖m,ω and |v|m,ω for ω ⊂ �, when ‖∂αv‖L2(ω) is

used above in place of ‖∂αv‖L2(�). In a few places, we use the more general Sobolev
spaces W k,p and their norms, and refer the reader to [1] for their definitions and
imbedding properties.

The differential operator in (2) is typical of a more general class of Schrödinger
operators, which we now describe. Let P be the set composed of vertices (corners)
of the domain � and the points on the boundary ∂� where the boundary condition
switches from the Dirichlet to Neumann or vice versa. Let Q ⊂ � be a fixed finite set
of points, and define R(x) = ∏

y∈Q |x − y|2. Namely, in the neighborhood of each

y ∈ Q, R(x) is comparable with the square of the distance to y. Let V : �\Q → R

be a function such that RV may be extended to a smooth function on �. Namely, V
may be an inverse square potential, with V = δr−2 as a simple example. The more
general type of the problem is

(−�+ V )u = f in �, u = 0 on ∂�D, ∂νu = 0 on ∂�N . (3)

Denote by S := P ∪ Q, the set composed of the vertices of the domain �, points
where the boundary condition switches types, and the singular points of the potential
V . In particular, for the model problem (2), P is the set containing all vertices of
� and points where the boundary condition changes type, and Q = {0}. Note that
even in the case when V is smooth on �, it is well known that the weak solution
of (3) generally possesses singularities at corners of � as well as points at which
the boundary condition switches type (cf. [3,5,7,21,28,29,35–37,40,51]). Although,
for sake of clarity in exposition, we will focus on the model problem (2), our results
extend to the more general problems (3), and we highlight at several key points how
such extensions can be made.

Well-posedness and regularity results for such problems are given in [41] in terms
of the following weighted Sobolev spaces and their corresponding norms
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A posteriori error estimation of hierarchical type 711

Km
a (�) = {v ∈ L2(�) : ϑ |α|−a∂αv ∈ L2(�) for all |α| ≤ m}, (4)

|v|Km
a

=
(∑

|α|=m ‖ϑm−a∂αv‖2
L2(�)

)1/2
, ‖v‖2

Km
a

=
(∑

|α|≤m |v|2Km
a

)1/2
,

where ϑ(x) is the distance from x to the set S. Note that S = P ∪ Q includes other
points different from the origin and ϑ is equivalent to r near the origin. As with the
standard (unweighted) norms and seminorms, we define ‖v‖Km

a (ω)
and |v|Km

a (ω)
on

subdomains ω ⊂ � in the obvious way.

2.2 Regularity results

We henceforth focus on the weak form of (2): Find u ∈ H such that

B(u, v) :=
∫

�

∇u · ∇v + δr−2 uv dx =
∫

�

f v dx := F(v), ∀v ∈ H. (5)

The natural Hilbert space H for this variational problem is

H = {u ∈ K1
1(�) : u = 0 on ∂�D}. (6)

It is clear from its definition that K1
1(�) ⊂ H1(�). The associated bilinear form B

is an inner-product in this case, and we denote the corresponding “energy”-norm by
||| · |||, so |||v|||2 := B(v, v). As before, we use ||| · |||ω when the associated integral is
restricted to ω ⊂ �.

We first establish the equivalence of the energy-norm and the K1
1-norm.

Lemma 2.1 For any function v ∈ H, the energy-norm and the K1
1-norm are equiva-

lent. Namely, there is a constant C > 0, independent of v, such that

C−1|||v||| ≤ ‖v‖K1
1(�)

≤ C |||v|||.

Proof Recalling the definitions of r and ϑ and the roles they play in both norms, we
see that we need only compare the norms in the immediate neighborhoods of boundary
points in P . In these regions, by the local Poincaré inequality in polar coordinates,
it is well known that the L2-norm of ϑ−1v is bounded by the H1-seminorm of v
(see [6,36,37] and Lemma 3.1 in [41]). This completes the proof. ��
Remark 2.2 The use of local Poincaré inequalities in the neighborhood of a point in
P requires the Dirichlet boundary condition on at least one edge adjacent to the point.
This is the reason that we assume no adjacent Neumann boundary condition is allowed
for a point in P . Although it can be removed if we enlarge these weighted spaces as
in [40], this assumption is maintained in order to simplify the presentation.

In addition to the norm equivalence, Lemma 2.1 leads to the well-posedness of (5)
in H. Furthermore, the following regularity result is proven in [41, Theorem 3.3]:
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712 H. Li, J. S. Ovall

Theorem 2.3 There is a constant η > 0, such that the solution u of Eq. (5) satisfies
the following regularity estimate:

‖u‖Km+1
a+1 (�)

≤ C‖ f ‖Km−1
a−1 (�)

, (7)

for any 0 ≤ a < η, where the constant C is independent of f and u.

Remark 2.4 To be more precise, the regularity estimate (7) holds in a neighborhood
of each singular point z ∈ S, with the constant (local regularity index) ηz chosen to
be the smallest eigenvalue of the local operator pencil near z (see [35,37] and [41,
Equations (20) and (21)]). We then take the global regularity index in Theorem 2.3
to be η = min{ηz : z ∈ S}. A thorough discussion of how to obtain local and global
regularity indices for problems of the sort described here can be found in [41].

The a priori results (Lemma 2.1 and Theorem 2.3) will be used to obtain finite
element estimates on graded meshes in Sects. 3 and 4.

3 Discretization and basic results

In this section, we formulate the finite element approximation for the Schrödinger-type
equation (2). We shall introduce a systematic construction of graded meshes that yield
finite element solutions with the optimal rate of convergence, although the solution
may present singularities near the origin and near the vertices of �. Several useful
properties of the finite element functions will be investigated in preparation for our a
posteriori estimate in Sect. 4.

3.1 Triangulation and finite element spaces

Given a triangulation T of �, let V be the vertex set (the vertices of all triangles) and
let E be the edge set. We implicitly assume that V includes all the singular points in
S. We define the two spaces

V = V (T ) = {H ∩ C(�) : v|T ∈ P1, ∀T ∈ T }, (8)

W = W (T ) = {H ∩ C(�) : v|T ∈ P2, ∀T ∈ T and v(z) = 0, ∀z ∈ V}. (9)

The space Pk consists of polynomials of total degree k or less. We note that it is
necessary that v(0) = 0 for v ∈ V ; if V includes several singularities of type |x − y|−2

for y ∈ �̄, it would be necessary that v(y) = 0 for each of them. We will approximate
the solution of (5) in the space V and assess the error of this approximation in the
space W .

For each vertex z ∈ V we define the continuous, piecewise-linear function �z which
satisfies the Kronecker property �z(z′) = δzz′ for all z, z′ ∈ V . It is clear that these
functions form a (non-smooth) partition of unity for �,

∑
z∈V �z = 1. For each edge

e ∈ E we define the continuous, piecewise quadratic function be = 4�z�z′ , where
z, z′ ∈ V are the endpoints of e; the factor of four is merely to make be(me) = 1,
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A posteriori error estimation of hierarchical type 713

where me is the midpoint of e. Let V◦ = V\({0} ∪ ∂�D) and E◦ = E\∂�D . It is
apparent that

V = span{�z : z ∈ V◦}, W = span{be : e ∈ E◦},

and these sets are bases for their respective spaces. We also assume that, for any
z ∈ Vs = V\V◦, there is z′ ∈ V◦ which shares an edge with z.

In the following lemma we collect a few basic results concerning the basis functions
and the geometry of the mesh T . Many of these can be found in [30], for example,
and are here stated without proof.

Lemma 3.1 Let T ∈ T have vertices zk , with internal angles θk, k = 1, 2, 3. Let
�k ∈ P1 satisfy �k(z j ) = δ jk , and take bk = 4�k−1�k+1, where the indices are
understood modulo 3 (i.e. b4 = b1, b0 = b3). The following hold:

�k(x) = ∇�k · (x − zk−1) = ∇�k · (x − zk+1); (10)

∇�k · ∇�k = cot θk−1 + cot θk+1

2|T | and ∇�k−1 · ∇�k+1 = −cot θk

2|T | ; (11)
∫

T

�
p
1 �

q
2�

r
3 dx = 2|T | p! q! r !

(p + q + r + 2)! for p, q, r ∈ Z≥0; (12)

∫

T

∇bk · ∇bk dx = 4

3
(cot θk−1 + cot θk + cot θk+1); (13)

∫

T

∇bk−1 · ∇bk+1 dx = −4

3
cot θk . (14)

Consequently, the following norm equivalence holds for functions in W .

Lemma 3.2 Let w ∈ W = W (T ) be given and consider a triangle T ∈ T . There is
a constant C, depending only on the angles in T , such that

‖r−1w‖0,T ≤ C |w|1,T .

Proof On T, w = w1b1 + w2b2 + w3b3. Therefore we have the obvious correspon-
dence between w|T and w = (w1, w2, w3)

t ∈ R
3. It holds that

‖r−1w‖2
0,T = wt K w and |w|21,T = wt Aw,

where Ki j = ∫
T r−2b j bi dx and Ai j = ∫

T ∇b j · ∇bi dx . It is clear from their defini-
tions that K and A are symmetric positive definite, and we deduce that

‖r−1w‖2
0,T ≤ λmax(K )

λmin(A)
|w|21,T .
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714 H. Li, J. S. Ovall

The eigenvalues of A are given in [30] as

λk(A) = 4

3

⎛
⎝c1 + c2 + c3 − 2

√
c2

1 + c2
2 + c2

3

3
cos

(
ψ + 2(k − 1)π

3

)⎞
⎠ , (15)

ψ = arccos

(
3
√

3 c1c2c3

(c2
1 + c2

2 + c2
3)

3/2

)
, c j = cot θ j , (16)

and it holds that 0 < λ1 ≤ λ3 ≤ λ2. So it remains to bound the largest eigenvalue of
K .

Letting z be the point on ∂T which is closest to the origin, we have r = |x | ≥ |x −z|
for x ∈ T . It is clear that

∫

T

r−2b2
k dx ≤

∫

T

|x − z|−2b2
k dx,

for the three quadratic edge-bump functions bk associated with this triangle. We first
consider the case that z is a vertex of T . Without loss of generality, we call it z1 and
number the other vertices arbitrarily. Using the definition of bk , and (10)–(12), we
deduce that

∫

T

|x − z1|−2b2
1 dx ≤ 4

3
(c1 + c2) and

∫

T

|x − z1|−2b2
1 dx ≤ 4

3
(c1 + c3). (17)

The first of these results can be seen as follows:

∫

T

|x − z1|−2b2
1 dx = 16

∫

T

(
∇�3 · (x − z1)

|x − z1|
)2

�2
2 dx ≤ 16|∇�3|2

∫

T

�2
2 dx

= 16
c1 + c2

2|T |
2|T | 2!

4! = 4

3
(c1 + c2).

Analogous arguments yield

∫

T

|x − z1|−2b2
2 dx ≤ 4

3
(c1 + c2) and

∫

T

|x − z1|−2b2
3 dx ≤ 4

3
(c1 + c3). (18)

So

trace(K ) =
3∑

k=1

∫

T

r−2b2
k dx ≤

3∑
k=1

∫

T

|x − z1|−2b2
k dx ≤ 4c1 + 2c2 + 2c3.
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z1

z3

z2

0

z

T

T

z1

z1'

z3

z2

0

z

T

T

z1

z1'

z2

z3

0

z

T

T

Fig. 1 Typical configurations for the proof of Lemma 3.2

Since λmax(K ) < trace(K ), it is clear that λmax(K )/λmin(A) can be bounded above
by a scale-invariant constant which depends only on the angles of T , and we may take
C to be the square-root of any such constant.

We now consider the case where z is not a vertex of T . Without loss of generality,
we take z1 to be the vertex opposite the edge e on which z lies, and let T ′ be the triangle
adjacent to T across the e. We denote by z′

1 the vertex of T ′ opposite e. It is always
possible to label the endpoints z2, z3 of e in such a way that � 0z2z3 is not smaller than
� z′

1z2z3 (see Fig. 1). We determine from (10) (or directly) that �1 = (x − z) · ∇�1.
Using the same type of arguments as above, we determine that

trace(K ) ≤
∫

T

r−2b2
1 dx + 8

3
(c2 + c3).

Taking φ = φ(x) to be the angle � 0z2x for x ∈ T \{z2}, we have, by the Law of
Cosines,

|x |2 = |x − z2|2 + |z2|2 − 2|x − z2||z2| cosφ.

If φ ≥ π/2, it is clear that |x | > |x − z2|. Now suppose that φ < π/2. If ψ = ψ(T ′)
is the smallest angle in T ′, then φ ≥ ψ . From this we deduce that

|x |2 ≥ (1 − cos2 φ)|x − z2|2 ≥ (1 − cos2 ψ)|x − z2|2.

In any case, we see that |x | ≥ √
1 − cos2 ψ |x − z2|. for any x ∈ T . Finally, we see

that
∫

T

r−2b2
1 dx ≤ (1 − cos2 ψ)−1

∫

T

|x − z2|−2b2
1 dx .

It is clear from the arguments above that this final quantity is bounded by a constant
depending only on the angles of T and T ′. The rest of the argument follows as it did
for the case when z was a vertex of T . This completes the proof. ��
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716 H. Li, J. S. Ovall

As an immediate corollary, we have

Corollary 3.3 There is a constant C, depending only on the angles in T , such that

|||w|||2 ≤ (1 + δC)|w|21
for all w ∈ W (T ), where δ > 0 is as in the differential operator (2).

Remark 3.4 Although Lemma 3.2 was proven for r = |x |, it is clear from the argument
the result holds for r = |x − y|, where y ∈ V . Furthermore, it is evident that, if V (x)
has the form δ1|x − y1|−2 + · · · + δm |x − ym |−2, where δk > 0 is constant and
yk ∈ V , then we have a result analogous to Corollary 3.3. Specifically, if B(·, ·) is the
bilinear form associated with −�+ V , and ||| · ||| is the associated energy-norm, then
|||w|||2 ≤ (1 + (δ1 + · · · + δm)C)|w|21 for all w ∈ W (T ).

Recalling that ϑ(x) is the distance between x and the singular set S, and noting
that ϑ(x) ∼ |x − y| for x “near” y ∈ S, the proof of Lemma 3.2 is readily adjusted
to accommodate ϑ , rather than r = |x − y| for each y ∈ Q. We formally state its
analogue, which will be used in later results.

Lemma 3.5 Let w ∈ W = W (T ) be given, and consider T ∈ T . There is a constant
C, depending only on the angles in T and the number of singular points in S, such
that

‖ϑ−1w‖0,T ≤ C |w|1,T .

3.2 The approximation and error estimation equations

We now introduce the finite element solution for the Schrödinger equation and the
associated error estimation equation for our a posteriori estimates.

In Definition 3.7 below we shall describe a family of nested, graded meshes Tn

which are appropriate for resolving solutions of (5) in the spaces Vn = V (Tn). More
specifically, we consider the family of approximation problems: Find un ∈ Vn such
that

B(un, vn) = F(vn), ∀vn ∈ Vn . (19)

We will also consider the associated family of error estimation problems: Find εn ∈
Wn = W (Tn) such that

B(εn, wn) = F(wn)− B(un, wn) = B(u − un, wn), ∀wn ∈ Wn . (20)

By Lemma 2.1, B(·, ·) is an inner-product. Thus, we see that εn is the orthogonal
projection of the error u − un onto the space Wn with respect to B(·, ·).

In Sect. 4, we investigate the relevant estimation properties of the approximate error
function εn . Because the computation of εn involves the solution of a linear system

123



A posteriori error estimation of hierarchical type 717

which is larger than that for computing un , we argue that this is far less costly than
it might initially appear. We do so by proving that the stiffness matrix associated
with (20) is spectrally-equivalent to its diagonal, making the linear system solvable by
simple means; a couple of steps of Jacobi-preconditioned conjugate gradient (CG) is
sufficient, for example. In contrast, the condition number of the stiffness matrix associ-
ated with (19) grows without bound as the mesh is refined, and therefore requires more
sophisticated solution techniques; we use (algebraic) multigrid with an incomplete LU
smoother [13] as a preconditioner for CG.

The spectral equivalence result for the stiffness matrix associated with (20) is stated
as follows.

Theorem 3.6 Let {bi : 1 ≤ i ≤ N } be an enumeration of the basis for W = W (T )
and define B ∈ R

N×N by Bi j = B(bi , b j ). Then B is spectrally-equivalent to its
diagonal.

Proof Let w ∈ R
N be the coefficient vector of w ∈ W with respect to the (ordered)

basis. Then wtBw = |||w|||2. By Corollary 3.3, we see that |w|21 ≤ |||w|||2 ≤ (1 +
δC)|w|21. Therefore,

wt Aw ≤ wtBw ≤ (1 + δC)wt Aw for all w ∈ R
N ,

where Ai j = ∫
�

∇b j · ∇bi dx . So A and B are spectrally-equivalent, as are their
diagonals. In [10] (see also [8,31]) we have argued that A is spectrally-equivalent to
its diagonal, which implies that B is as well. ��

3.3 A priori error bounds on graded meshes

We now recall the construction of special graded meshes for the finite element approxi-
mation of Eq. (5) introduced in [41]. Depending on the choice of the grading parameter,
these meshes can yield finite element solutions with the optimal rate of convergence
to singular solutions of (5).

Definition 3.7 (Graded Triangulations) Let T be a triangulation of�whose vertices
include S, such that no triangle in T has more than one of its vertices in S. For

Fig. 2 A κ-refinement of a single triangle with singular point, denoted by filled circles; κ = 1/3 (left) and
κ = 1/5 (right)
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718 H. Li, J. S. Ovall

Fig. 3 Graded triangulations T0–T3, with κ = 1/5, grading toward the center point

κ ∈ (0, 1/2], a κ refinement of T , denoted by κ(T ), is obtained by dividing each edge
AB of T in two parts as follows:

• If neither A nor B is in S, then we divide AB into two equal parts.
• Otherwise, if say A is in S, we divide AB into AC and C B such that |AC | = κ|AB|.

This will divide each triangle of T into four triangles (see Fig. 2). Given an initial
triangulation T0, the associated family of graded triangulations {Tn : n ≥ 0} is
defined recursively, Tn+1 = κ(Tn) (see Fig. 3). We see that dim(Vn) ∼ 4n , because
each refinement increases the number of triangles by precisely a factor of 4; and the
same can be said for dim(Wn).

Remark 3.8 In practice it may be useful to have distinct grading parameters {κ j :
z j ∈ S} which are chosen based on a priori knowledge of the singular behavior of the
weak solution u at these points. For example, at a convex corner z ∈ S of � at which
the boundary condition does not change type, one might naturally choose κz = 1/2
because the solution is locally at least in H2. The discussion in [41] indicates how
the grading parameter(s) can be appropriately chosen more generally. For example,
suppose f ∈ K0

a−1 for 0 < a < min(ηz, 1) in a neighborhood of z ∈ S, where ηz is the
local regularity index near z. In this case we choose the grading parameter κz = 2−1/a

in the construction of the graded mesh near z.

The following convergence result is proven in [41, Theorem 4.12]:
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Theorem 3.9 Recall the regularity index η in Theorem 2.3. For any 0 < a < η̂ :=
min(η, 1), choose κ = 2−1/a. Then, on the resulting family of graded triangulations
{Tn}, in the manner of Definition 3.7 and Remark 3.8, the optimal order convergence
is achieved for the solutions u ∈ H of (5) and un ∈ Vn of (19):

‖u − un‖K1
1(�)

≤ C dim(Vn)
−1/2‖ f ‖K0

a−1(�)
,

for a constant C which depends on the grading parameter(s), but not on f or n.

Remark 3.10 In [41], a more general result,

‖u − un‖K1
1(�)

≤ C dim(Vn)
−m/2‖ f ‖Km−1

a−1 (�)
,

was proven, where Vn consists of the continuous functions in K1
1(�) which are in Pm

on each triangle, and the stronger grading parameter κ = 2−m/a is used for refinement.
That result also allows for multiple grading parameters as in Remark 3.8.

4 Asymptotic exactness of the hierarchical error estimate

We carry out our a posteriori error analysis, using hierarchical-type error estimators, on
appropriately graded meshes that satisfy the conditions of Theorem 3.9. The approx-
imate error function, εn ≈ u − un , will be proven to be asymptotically identical to
u − un in the energy-norm ||| · |||, thereby providing a useful criterion for determining
when the error is below a certain tolerance. It will be convenient to use the following
common notation: for quantities X,Y , we write X � Y when X ≤ CY for some
constant C which is independent of X and Y ; and we write X � Y when X � Y and
Y � X . In some of the arguments below, we abuse this notation slightly; for example,
“X1 � X2 = X3 � X4 ≤ X5” should be understood as “X1 � X2 and X2 = X3
and X3 � X4 and X4 ≤ X5”. This notational abuse more clearly indicates how the
individual terms in the expression are related.

For convenience we let N = dim(Vn), and therefore N � 4n . Recall regularity
index η in Theorem 2.3. We select a grading parameter a < η̂ = min(1, η), and
κ = 2−1/a . Let ξ ∈ (a, η̂) be a constant with ξ < 2a. Throughout the results below,
we assume that u ∈ K3

1+ξ (�), which will hold, for example, when f ∈ K1
ξ−1(�).

The key result of this paper is

Theorem 4.1 There is a σ > 1/2 for which |||u − un − εn||| � N−σ ‖u‖K3
1+ξ (�)

.

Therefore, if |||u − un||| � N−1/2, then

|||εn|||
|||u − un||| → 1 as n → ∞.

The bulk of this section is devoted to proving the first of these assertions, which is
a consequence of (21) and Lemmas 4.5 and 4.12. The second assertion follows from
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the first almost immediately. Since |||u − un||| � N−1/2, we have

∣∣∣∣1 − |||εn|||
|||u − un|||

∣∣∣∣ = ||||u − un||| − |||εn||||
|||u − un||| ≤ |||u − un − εn|||

|||u − un||| � N 1/2−σ → 0.

An overview of the argument for the first assertion of Theorem 4.1 is as follows: Let
uI = uI,n ∈ Vn interpolate u at the vertices of the mesh Tn , and uQ = uQ,n ∈ Vn ⊕Wn

interpolate u at the vertices and edge-midpoints of Tn . It is clear that u B = u B,n =
uQ − uI ∈ Wn . By definition, it holds that

|||u − un − εn|||2 = B(u − un − εn, u − un − εn) = B(u − un − εn, u − un − u B).

Therefore, |||u − un − εn||| ≤ |||u − un − u B |||. Using the triangle inequality and
u − un − u B = (u − uQ)+ (uI − un), we deduce that

|||u − un − εn||| ≤ |||u − uQ ||| + |||uI − un|||. (21)

It remains to show that |||u − uQ ||| = o(N−1/2) and |||uI − un||| = o(N−1/2). The
first of these is perhaps not surprising (though it must be proved), but the assertion
that |||uI − un||| = o(N−1/2) uses super-convergence properties which rely on the
fact that most of the triangulation Tn exhibits local mesh symmetries which can be
carefully exploited to identify cancellations leading to higher-order convergence. Two
common views of these local symmetries (or approximate symmetries) are represented
in [14,48]. The first of these focuses on points/vertices, considering patches of elements
which are (approximately) symmetric with respect to the point. The second reference
can be thought of as focussing on edges, considering pairs of triangles which form an
(approximate) parallelogram. The superconvergence argument presented here builds
on that of [19] for the Laplacian on graded meshes, which takes the view of [48]
in terms of mesh symmetries. In our case, we must also address the term with the
inverse-square potential.

Before moving on to the proof of Theorem 4.1, we briefly consider two related
Hessian recovery results.

4.1 Hessian recovery in W 2,1(�)

Although we generally expect that u /∈ H2(�), it is not unreasonable to expect that
u ∈ W 2,1(�). This is certainly the case if u only has singularities of type rα for α > 0.
In fact, we might reasonably expect that u ∈ W 2+s,1(�) for some s ∈ (0, 1), and this
does hold for the problems considered in Sect. 5. We present two lemmas concerning
Hessian recovery in W 2,1(�), and revisit the result (22) in Sect. 5.

Lemma 4.2 If u ∈ W 2,1(�) and
∑

T ∈Tn
|u − uQ |W 2,1(T ) → 0 as n → ∞, then

∑
T ∈Tn

|εn|W 2,1(T ) → |u|W 2,1(�) as n → ∞. (22)
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Proof We first prove that

∑
T ∈Tn

|εn − uQ |W 2,1(T ) → 0 as n → ∞.

The proof of Theorem 4.1 reveals that |||εn −u B ||| ≤ ||||u−un −εn|||−|||u−un −u B |||| �
N−σ for some σ > 1/2. Therefore, |εn − u B |H1(�) � N−σ as well. We see that

∑
T ∈Tn

|εn − uQ |W 2,1(T ) =
∑

T ∈Tn

|εn − u B |W 2,1(T ) �
∑

T ∈Tn

h−1
T |εn − u B |W 1,1(T )

�
∑

T ∈Tn

|εn − u B |H1(T ) ≤
⎛
⎝ ∑

T ∈Tn

1

⎞
⎠

1/2

|εn − u B |H1(�)

� N 1/2−σ → 0.

We used equivalence of norms on finite dimensional spaces (three dimensional in this
case) and a scaling argument to establish the inverse estimate |εn − u B |W 2,1(T ) �
h−1

T |εn − u B |W 1,1(T ). Here, hT is the diameter of T . Finally, since |u − εn|W 2,1(T ) ≤
|u − u B |W 2,1(T )+|εn − u B |W 2,1(T ), if

∑
T ∈Tn

|u − uQ |W 2,1(T ) → 0, then
∑

T ∈Tn
|u −

εn|W 2,1(T ) → 0, which implies that
∑

T ∈Tn
|εn|W 2,1(T ) → |u|W 2,1(�). This completes

the proof. ��

The Lemma below provides a sufficient condition on u for which
∑

T ∈Tn
|εn|W 2,1(T )

→ |u|W 2,1(�).

Lemma 4.3 Suppose that u ∈ W 2+s,1(�) for some s ∈ (0, 1). Then

∑
T ∈Tn

|u − uQ |W 2,1(T ) → 0 as n → ∞.

Proof Let T̂ be a reference element of diameter 1. For any function v on a triangle T ,
we define v̂ on T̂ in the usual way through affine transformation between T̂ and T . It
holds that

|u − uQ |W 2,1(T ) � |û − ûQ |W 2,1(T̂ ) ≤ |û − P̂|W 2,1(T̂ ) + |P̂ − ûQ |W 2,1(T̂ ),

where the hidden constant is scale-invariant, and P̂ may be any quadratic polynomial
on T̂ . Using the stability of quadratic Lagrange nodal interpolation (the Lagrange
interpolant of P̂ is P̂) together with a Sobolev imbedding result, we have

|P̂ − ûQ |W 2,1(T̂ ) � ‖P̂ − û‖L∞(T̂ ) � ‖P̂ − û‖W 2,1(T̂ ).

123



722 H. Li, J. S. Ovall

At this stage, we choose P̂ to be the averaged Taylor polynomial of Dupont and
Scott [24], and we see that

|u − uQ |W 2,1(T ) � ‖û − P̂‖W 2,1(T̂ ) � ‖û − P̂‖W 2+s,1(T̂ ) � |û|W 2+s,1(T̂ )

� hs
T |u|W 2+s,1(T ).

The key inequality ‖û − P̂‖W 2+s,1(T̂ ) � |û|W 2+s,1(T̂ ) is [24, Theorem 6.1], and the final
inequality is merely a scaling argument.

Since the largest triangles in Tn have diameter on the order of 2−n � N−1/2 (see
Definition 4.4 below), it holds that

∑
T ∈Tn

|u − uQ |W 2,1(T ) �
∑

T ∈Tn

hs
T |u|W 2+s,1(T ) ≤ N−s/2|u|W 2+s,1(�).

This completes the proof. ��

4.2 The proof of Theorem 4.1

We specify the following geometric properties of our graded meshes to carry out
further analysis.

Definition 4.4 (Mesh layers) Recall that the triangulation T j , 0 ≤ j ≤ n, is obtained
after j successive graded refinements of T0 with parameter κ (see Definition 3.7 and
Remark 2.4). Let T j ⊂ T j be the union of (closed) triangles in T j having a point in
S as a vertex. Namely, T j is the immediate neighborhood of S in T j . Then, the j th
layer of the mesh Tn is defined as

L0 = �\T1, L j = T j−1\T j , 1 ≤ j < n, Ln = Tn .

It is apparent that � = Tn ∪ (∪ j L j ). Based on Definition 3.7, the characteristic
diameter of the triangles in L j is h j � κ j 2 j−n for j ≤ n, and ϑ � κ j on L j for
j < n. On Ln, ϑ � κn .

We provide the following guide through the technical arguments below. As indicated
in (21), the two key results to prove are that |||u −uQ ||| and |||uI −un||| converge to zero
more rapidly than |||u−un|||. The first of these, Lemma 4.5, follows readily enough from
a few results proven elsewhere; but the second, Lemma 4.12, requires more delicate
estimation, and we break up its analysis into a sequence of intermediate lemmas whose
goal is to provide sufficiently sharp bounds on the pointwise error vector e and the
residual vector r for which |||uI − un|||2 = rt e (see (25) and (26)). The bounds for
e and r, namely Lemmas 4.9 and 4.10, are themselves established through a series
of intermediate technical results. For the analysis of e, it is useful to move between
functional and linear algebraic perspectives when considering the weighted L2-norm
of uI − un , hence the consideration of the associated mass matrix M in Lemma 4.8.
The estimates for r requires certain mesh symmetries in the bulk of the domain, and
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the analysis naturally splits into three categories: portions of the domain adjacent to
singular points (33), and portions of the domain away from singular points where
meshes symmetries are present (36) or are not present (37). The second key lemma,
Lemma 4.12, follows from the careful accounting of the different contributions to the
error bound that was done in Lemmas 4.9 and 4.10.

Lemma 4.5 It holds that |||u − uQ ||| � N−ξ/(2a)‖u‖K3
ξ+1(�)

.

Proof In [41, Lemma 4.8] it is shown that, in the final layer Ln (adjacent to singular
points),

|||u − uQ |||Ln � κnξ‖u‖K3
1+ξ (Ln)

� 2−nξ/a‖u‖K3
1+ξ (Ln)

. (23)

For other layers L j , 0 ≤ j < n, it holds that (cf. [41, Lemma 4.4])

|||u − uQ |||L j � κ ja
(

h j

κ j

)2

‖u‖K3
1+a(L j )

� 2 j−2n‖u‖K3
1+a(L j )

� 2 j−2nκ j (ξ−a)‖u‖K3
1+ξ (L j )

= 2−2n+(2−ξ/a) j‖u‖K3
1+ξ (L j )

.

The inequality ‖u‖K3
1+a(L j )

� κ j (ξ−a)‖u‖K3
1+ξ (L j )

follows from [41, Lemma 2.6(b)].

The assumption that ξ < 2a ensures that 2 − ξ/a > 0, so that 2−2n+(2−ξ/a) j is
maximized when j = n. Therefore,

|||u − uQ |||L j � 2−2n+(2−ξ/a)n‖u‖K3
1+ξ (L j )

= 2−nξ/a‖u‖K3
1+ξ (L j )

. (24)

Combining (23) and (24) completes the proof. ��
Let φi ∈ Vn denote the piecewise-linear basis function satisfying φi (z j ) = δi j for

each vertex z j in the mesh Tn , and let ωi denote its support. Therefore, ωi is the patch
of triangles having zi as a vertex. It holds that

|||uI − un|||2 = B(un − uI , un − uI ) = B(u − uI , un − uI ) = rt e ≤ ‖r‖ ‖e‖, (25)

where r, e ∈ R
N are given by

ri = B(u − uI , φi ), ei = (un − uI )(zi ) (26)

and ‖ · ‖ is the Euclidean norm.
We begin by analyzing ‖e‖, and do so by first introducing the weighted L2 inner-

product,

(v,w)P2 = (Pv, Pw) where P|L j = (2κ)− j . (27)
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We use ‖·‖P2 to denote the induced norm. The weighted L2 mass matrix M ∈ R
N×N ,

given by

mi, j = (φi , φ j )P2 ,

will also play a role in the analysis.

Lemma 4.6 It holds that ‖u − uI ‖K0
1(Ln)

� κnξ‖u‖K2
ξ+1(Ln)

.

Proof For a singular point y ∈ S, it is clear that with several graded refinements, the
function ϑ |Ln equals the distance to y. Using a simple translation if necessary, we see
that we lose no generality by assuming that y = 0. Let L̂n := λ−1Ln , where λ = κn .
Then, we define the dilation of a function on L̂n ,

vλ(x) = v(λx), ∀ x ∈ L̂n .

Then, by Lemma 4.3 in [41],

‖vλ‖Km
μ (L̂n)

= λμ−1‖v‖Km
μ (Ln). (28)

Let χ be a smooth function that equals 0 in a neighborhood of y and equals 1 at all
the nodal points of L̄n . Then, since χu = 0 in the neighborhood of y, we first have
for 0 ≤ m ≤ 2,

‖(χu)λ‖Hm (L̂n)
� ‖(χu)λ‖Km

1 (L̂n)
� ‖(χu)λ‖Hm (L̂n)

, (29)

‖(χu)λ‖Km
1 (L̂n)

� ‖uλ‖Km
1 (L̂n)

. (30)

Note that uI is also the interpolant of χu on Ln by the definition. Therefore, by (28),
(29), (30), and the definition of the weighted spaces, we have

‖u − uI ‖K0
1(Ln)

≤ ‖u − χu‖K0
1(Ln)

+ ‖χu − uI ‖K0
1(Ln)

= ‖uλ − (χu)λ‖K0
1(L̂n)

+ ‖(χu)λ − uλI ‖K0
1(L̂n)

� (‖uλ‖K0
1(L̂n)

+ ‖(χu)λ‖H2(L̂n)
)

� ‖uλ‖K2
1(L̂n)

= ‖u‖K2
1(Ln)

� κnξ‖u‖K2
ξ+1(Ln)

.

This completes the proof. ��
Lemma 4.7 It holds that ‖uI − un‖P2 � N−1‖u‖K2

ξ+1(�)
.

Proof The proof is based on estimates for ‖u − uI ‖P2 and ‖u − un‖P2 . To show that
‖u − un‖P2 � N−1‖u‖K2

ξ+1(�)
, we begin with a standard duality-type argument. Let

w ∈ H be the unique function satisfying B(w, v) = (P2(u − un), v) for all v ∈ H.
Choosing v = u − un , we have

‖u−un‖2
P2 = B(w, u − un) = B(w − wn, u−un) � ‖w−wn‖K1

1(�)
‖u − un‖K1

1(�)

� N−1/2‖P2(u − un)‖K0
a−1(�)

N−1/2‖u‖K2
a+1(�)

.
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Note that

‖P2(u − un)‖2
K0

a−1(�)
=

∑
j≤n

‖P2ϑ1−a(u − un)‖2
L2(L j )

�
∑
j≤n

‖P(2κ)− j (κ j )1−a(u − un)‖2
L2(L j )

=
∑
j≤n

‖P(u − un)‖2
L2(L j )

= ‖u − un‖2
P2 .

Here we used (2κ)− j (κ j )1−a = 2− jκ− ja = 1. Therefore, we have established

‖u − un‖P2 � N−1‖u‖K2
a+1(�)

� N−1‖u‖K2
ξ+1(�)

. (31)

We now turn to ‖u − uI ‖P2 , beginning with the identity

‖u − uI ‖2
P2 =

∑
j≤n

(2κ)−2 j‖u − uI ‖2
L2(L j )

.

For j < n, we have

(2κ)−2 j‖u − uI ‖2
L2(L j )

= (2κ)−2 j
∑

T ⊂L j

‖u − uI ‖2
L2(T ) � (2κ)−2 j h4

j |u|2H2(L j )

= (2κ)−2 j h4
jκ

−2 j (1−ξ) |κ j (1−ξ)u|2H2(L j )

� (2κ)−2 j h4
jκ

−2 j (1−ξ) |u|2K2
1+ξ (L j )

= 2−4n−2(ξ/a−1) j |u|2K2
1+ξ (L j )

≤ 2−4n |u|2K2
1+ξ (L j )

.

Using Lemma 4.6 on Ln , we have

‖(2κ)−n(u − uI )‖2
L2(Ln)

� 2−2n‖u − uI ‖2
K0

1(Ln)
� 2−2nκ2nξ‖u‖2

K2
ξ+1(Ln)

= 2−2n−2nξ/a‖u‖2
K2
ξ+1(Ln)

≤ 2−4n‖u‖2
K2
ξ+1(Ln)

.

Finally, summing over layers, we obtain

‖u − uI ‖2
P2 =

∑
j≤n

(2κ)−2 j‖u − uI ‖2
L2(L j )

� 2−4n|u|2K2
1+ξ (�)

� N−2|u|2K2
1+ξ (�)

.

(32)

The proof is completed by combining (31) and (32). ��
Lemma 4.8 The matrix M is symmetric and positive definite, and vt Mv � N−1vt v
for any v ∈ R

N , where the constants of equivalence depend only on κ .
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Proof Since M is a Gram matrix (arising from an inner-product), and {φi : 1 ≤ i ≤ N }
is a linearly independent set, M is symmetric and positive definite. We identify v ∈ Vn

with its coefficient vector v ∈ R
N . It holds that

vt Mv = ‖Pv‖2
0,� =

n∑
j=0

∑
T ⊂L j

‖Pv‖2
0,T =

n∑
j=0

∑
T ⊂L j

(2κ)−2 j‖v‖2
0,T .

Taking vT to consist of the components of v which are associated with the non-
Dirichlet vertices of T , we estimate ‖v‖2

0,T in terms of ‖vT ‖2. We lose no generality
by assuming that all three vertices of T correspond to degrees of freedom, therefore
vT ∈ R

3. It holds that

‖v‖2
0,T = vt

T RT vT where RT = |T |
⎛
⎝

2 1 1
1 2 1
1 1 2

⎞
⎠ ,

and λmax(RT ) = 4|T |, λmin(RT ) = |T |. Since |T | � h2
j � (2 j−nκ j )2 for each

T ∈ L j , we deduce that

vt Mv �
∑
j≤n

∑
T ⊂L j

(2κ)−2 j (2 j−nκ j )2vt
T vT =

∑
j≤n

∑
T ⊂L j

N−1vt
T vT

= N−1
∑

T ∈Tn

vt
T vT � N−1vt v.

This completes the argument. ��
Lemmas 4.7 and 4.8 combine to give a bound on ‖e‖.

Lemma 4.9 It holds that ‖e‖ � N−1/2‖u‖K2
ξ+1(�)

, where the hidden constant

depends only on ξ and the grading parameter a.

Proof We see that

‖e‖2 � NeT Me = N‖uI − un‖2
P2 � N−1‖u‖2

K2
ξ+1(�)

,

which completes the argument. ��
We now consider the quantities ri = B(u−uI , φi ) for various scenarios, beginning

with the case ωi ∩ Ln �= ∅. It holds that

|ri |=|B(u − uI , φi )|≤|||u − uI ||||||φi ||| � κnξ‖u‖K2
ξ+1(ωi )

|||φi ||| � 2−nξ/a‖u‖K2
ξ+1(ωi )

.

(33)

The result |||u −uI ||| ≤ Cκnξ‖u‖K2
ξ+1(ωi )

is established in [41]. Lemma 3.1 guarantees

that |φ|1,ωi is bounded by a constant depending only on the shape regularity of ωi ,
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which is governed purely by the grading ratio κ , and the argument used in the proof
of Lemma 3.2 can be used here to establish that this is also the case for ‖r−1φi‖0,ωi .
Therefore, |||φi ||| ≤ C .

For patches ωi intersecting layer L j , 0 ≤ j < n, we distinguish two categories:
those which are symmetric about zi , and those which are not. A patch ωi is said to
be symmetric about zi if zi − (x − zi ) ∈ ωi whenever x ∈ ωi . For a symmetric
patch ωi ⊂ L j , it is proven in [20] that |(∇(u − uI ),∇φi )| � h2

j |u|3,ωi ; for a fuller
discussion of the relationship between local mesh symmetries and super-convergence
properties, see [48]. From this we deduce that

|(∇(u − uI ),∇φi )| � h2
j (κ

j )ξ−2|u|K3
ξ+1(ωi )

� κ jξ22( j−n)|u|K3
ξ+1(ωi )

= 2−2n+(2−ξ/a) j |u|K3
ξ+1(ωi )

� 2−nξ/a |u|K3
ξ+1(ωi )

. (34)

For a general patch ωi ⊂ L j , 0 ≤ j < n, it also holds that

|(r−2(u − uI ), φi )| � κ−2 j‖u − uI ‖0,ωi ‖φi‖0,ωi � κ−2 j h2
j |u|2,ωi h j

� κ−2 j h3
j (κ

j )ξ−1|u|K2
ξ+1(ωi )

� 2−3n+(3−ξ/a) j |u|K2
ξ+1(ωi )

� 2−nξ/a |u|K2
ξ+1(ωi )

. (35)

Combining these results in (34) and (35), we see that, for a symmetric patch ωi in
layer L j , j < n,

|ri | = |B(u − uI , φi )| � 2−nξ/a‖u‖K3
ξ+1(ωi )

. (36)

We now consider non-symmetric patches ωi which intersect layer L j , 0 ≤ j < n,
but do not intersect Ln . For any 0 < s < 1, it holds that

|(∇(u − uI ),∇φi )| ≤ ‖∇(u − uI )‖L∞(ωi )‖∇φi‖L1(ωi )
� hs

j‖u‖W 1+s∞ (ωi )
|ωi |1/2

� hs
jκ

j (ξ−2)‖κ j (2−ξ)u‖W 1+s∞ (ωi )
|ωi |1/2

� hs
jκ

j (ξ−2)‖ϑ2−ξu‖W 1+s∞ (ωi )
|ωi |1/2.

The analysis of |(r−2(u − uI ), φi )| is the same as for the symmetric case. Combining
the above, we see that for non-symmetric patches ωi intersecting L j but not Ln ,

|ri |2 = |B(u − uI , φi )|2 � κ2 j (ξ−2)h2s
j ‖ϑ2−ξu‖2

W 1+s∞ (ωi )
|ωi | + 2−2nξ/a |u|2K2

ξ+1(ωi )
.

(37)

Lemma 4.10 Let ξ ∈ (a, η̂) with ξ ≤ 3a/2. There is a σ > 1/2 for which ‖r‖ �
N−σ‖u‖K3

ξ+1(�)
.
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Proof Let In = {i : ωi ∩ Ln �= 0}. It follows from (33) that

∑
i∈In

|ri |2 � 2−2nξ/a
∑
i∈In

‖u‖2
K3
ξ+1(ωi )

� 2−2nξ/a‖u‖2
K3
ξ+1(Ln∪Ln−1)

≤ 2−2nξ/a‖u‖2
K3
ξ+1(�)

.

Let I j = {i : ωi ⊂ L j and ωi is symmetric}, for j < n. It follows from (36) that

∑
j<n

∑
i∈I j

|ri |2 �
∑
j<n

∑
i∈I j

2−2nξ/a‖u‖2
K3
ξ+1(ωi )

� 2−2nξ/a
∑
j<n

‖u‖2
K3
ξ+1(L j )

≤ 2−2nξ/a‖u‖2
K3
ξ+1(�)

The analysis for non-symmetric patches is a little more involved. Let

J j = {i : ωi ∩ L j �= ∅ , ωi ∩ Ln = ∅ and ωi is not symmetric},

for j < n. It is shown in [19] that

∑
i∈J j

|ωi | � κ j h j . (38)

Using (37), we see that

∑
j<n

∑
i∈J j

|ri |2 �
∑
j<n

∑
i∈J j

2−2nξ/a |u|2K2
ξ+1(ωi )

+
∑
j<n

∑
i∈J j

κ2 j (ξ−2)h2s
j ‖ϑ2−ξu‖2

W 1+s∞ (ωi )
|ωi |

� 2−2nξ/a |u|2K2
ξ+1(�)

+ ‖ϑ2−ξu‖2
W 1+s∞ (�\Ln)

∑
j<n

κ2 j (ξ−2)h2s
j κ

j h j .

For the second inequality, we used (38) to bound the latter sum. By the definitions of
the corresponding spaces and the Sobolev imbedding theorem for 0 < s < 1, we have

‖ϑ2−ξu‖W 1+s∞ (�\Ln)
≤ ‖ϑ2−ξu‖W 1+s∞ (�)

� ‖ϑ2−ξu‖H3(�) � ‖u‖K3
ξ+1(�)

.

From this, we obtain

∑
j<n

∑
i∈J j

|ri |2 �

⎛
⎝2−2nξ/a +

∑
j<n

κ2 j (ξ−2)h2s
j κ

j h j

⎞
⎠ ‖u‖2

K3
ξ+1(�)

.
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For any ρ ∈ (0, 1), with s = 1 − ρ, we have

κ2 j (ξ−2)h2s
j κ

j h j = κ j (2ξ−3)h2s+1
j � κ j (2ξ−3)κ j (2s+1)2( j−n)(2s+1)

= κ2 j (s+ξ−1)2( j−n)(2s+1)

= κ2 j (ξ−ρ)2( j−n)(3−2ρ) = 2 j[(3a−2ξ)+2ρ(ξ−ρ)]/a2−n(3−2ρ).

As a temporary notational convenience, let φ = [(3a − 2ξ)+ 2ρ(ξ − ρ)]/a. We lose
no generality by assuming that ξ > ρ, therefore φ > 0. We have

∑
j<n

κ2 j (ξ−2)h2s
j κ

j h j = 2−n(3−2ρ) 2nφ − 1

2φ − 1
≤ 2−2n(ξ/a−ρ(ξ+a−ρ)/a)

23−2ξ/a − 1
.

At this stage we see that, for any ε > 0, we may choose ρ > 0 small enough so that

∑
j<n

∑
i∈J j

|ri |2 � 2−2n(ξ/a−ε)‖u‖2
K3
ξ+1(�)

� N−(ξ/a−ε)‖u‖2
K3
ξ+1(�)

.

Combining this result with those for Ln and the symmetric patches in L j for j < n,
we finally obtain

‖r‖2 � N−(ξ/a−ε)‖u‖2
K3
ξ+1(�)

,

from which the assertion of the lemma follows directly. ��
Remark 4.11 A similar argument to that given in Lemma 4.10 could be made for
3a/2 < ξ < min(2a, η̂), again showing that ‖r‖ = o(N−1/2). In light of this, the
restriction ξ ≤ 3a/2, though convenient for the proof, is not necessary, and one can
replace this with the assumption ξ < 2a used in prior lemmas.

Lemmas 4.9 and 4.10 combine to yield the superconvergence result below, the last
essential component in the proof of Theorem 4.1.

Lemma 4.12 There is a σ > 1/2 for which |||uI − un||| � N−σ‖u‖K3
ξ+1(�)

.

5 Numerical experiments

We provide numerical experiments solving Eq. (5) on three different domains using the
corresponding optimally graded meshes described in Theorem 3.9. These problems
represent three typical scenarios for the model problem: (1) an interior singularity
resulting from the singular potential (Sect. 5.1), (2) a boundary singularity result-
ing from a combination of a singular potential and a re-entrant (non-convex) corner
at which a switch in the boundary conditions takes place (Sect. 5.2), and (3) multi-
ple singularities from the singular potential and the non-smoothness of the domain,
respectively (Sect. 5.3). In these experiments, un denotes the discrete solution on the

123



730 H. Li, J. S. Ovall

triangulation Tn , which has N = N (n) triangles. For the graded (a priori) refinement,
N (n + 1) = 4N (n). As an interesting comparison, we also test these problems on
adaptive (a posteriori) meshes. Note that the underlying mechanism for the adaptive
(a posteriori) approximation is quite different from the graded (a priori) approxima-
tion. The theoretical justification of these adaptive approximations shall be studied in
the future work. In the adaptive refinement simulations, we still use un to denote the
discrete solution.

In addition to the convergence rate of the numerical solution, we report the effec-
tivity ‖εn‖/‖u −un‖ for both the energy norm ||| · ||| and the H1-seminorm | · |1, noting
the observed asymptotic exactness. These (exact) convergence rates and effectivities
are provided in Sects. 5.1 and 5.2, where the exact solutions are known. In Sect. 5.3,
we use ‖εn‖ as a proxy for the actual error ‖u − un‖ in our convergence plots, and do
not estimate the effectivities. In all graphs, N = N (n) is given on the horizontal axis,
and the quantity of interest (error, effectivity, condition number) on the vertical axis.
As such, axes are not given labels, and the quantities of interest are described in the
accompanying captions.

The software package PLTMG [9] was used for these experiments, with suitable
modifications for employing hierarchical error estimation and graded mesh refine-
ment. We note a few details concerning the adaptive refinement algorithm, which is
more sophisticated than many of the commonly-used approaches in similar software.
All current elements are placed in a heap data structure according to the size of the
local error indicators. Here, we use estimates of local H1-semi-norm error, |εn|1,T , to
drive the adaptive refinement even if we are concerned with error in the energy norm.
The element with largest error estimate is at the root of the heap, and is selected for
refinement. The longest-edge bisection of Rivara [47] is used to refine this triangle
and a minimal number of neighbors in order to produce a valid triangulation (no hang-
ing nodes). Error indicators are immediately computed for each of the new elements,
and the heap is updated, with the new “worst” triangle marked for refinement. This
continues until the total number of elements has been increased by roughly a factor
of four, which is the rate of increase in elements for the graded refinement approach.
This refinement approach allows for a more aggressive refinement toward detected
singularities. The refined mesh is then post-processed to improve the quality of trian-
gles (shape-regularity)—i.e. make them closer to being equilateral. This is done by
a combination of edge-swapping and mesh smoothing [12], in such a way as to pre-
serve the locations of specific “flagged” points, such as those in the singular set S. We
briefly return to the issue of computing local error indicators on new elements without
resolving (19)–(20) on the intermediate meshes. Any function in Wn , when restricted
to a triangle, is uniquely determined by the geometry of that triangle and its Hessian
on the triangle. Because of this, error indicators may be immediately obtained for the
children of a triangle by adopting the Hessian of the parent. Of course, the quality
of these indicators will deteriorate if too many refinements are done before a new
problem is solved, but extensive empirical evidence suggests that this approach is
very effective. Because the Hessian of εn is used (locally) in the adaptive scheme, we
provide numerical evidence below that it, in some sense, approximates the Hessian
of u.
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Table 1 Errors and effectivities for the unit disk, δ = 0.5: adaptive refinement driven by local indicators
(top); graded refinement with κ = 0.375 (middle); graded refinement with κ = 0.2 (bottom)

N |||u − un ||| EFF |u − un |1 EFF

8 1.4677E+00 1.4186 1.2119E+00 1.4729

94 4.5930E−01 1.0076 4.1764E−01 1.0598

452 2.1335E−01 0.8932 1.9068E−01 0.9842

1,921 9.7086E−02 0.9717 9.4121E−02 0.9928

7,865 4.5802E−02 0.9808 4.5172E−02 0.9908

31,783 2.1953E−02 0.9881 2.1846E−02 0.9917

127,740 1.0755E−02 0.9915 1.0738E−02 0.9926

8 1.4677E+00 1.4186 1.2119E+00 1.4729

32 8.0950E−01 1.0877 7.7101E−01 1.0895

128 4.1937E−01 1.0207 4.0920E−01 1.0279

512 2.1579E−01 1.0013 2.1121E−01 1.0136

2,048 1.1109E−01 0.9949 1.0901E−01 1.0070

8,192 5.7162E−02 0.9926 5.6142E−02 1.0046

32,768 2.9380E−02 0.9923 2.8895E−02 1.0034

131,072 1.5081E−02 0.9922 1.4842E−02 1.0030

8 1.4677E+00 1.4186 1.2119E+00 1.4729

32 9.9004E−01 1.0702 9.5710E−01 1.0485

128 5.0505E−01 1.0217 4.9974E−01 1.0159

512 2.5477E−01 1.0064 2.5391E−01 1.0051

2,048 1.2808E−01 1.0023 1.2797E−01 1.0019

8,192 6.4267E−02 1.0005 6.4247E−02 1.0004

32,768 3.2192E−02 1.0002 3.2188E−02 1.0002

131,072 1.6121E−02 0.9993 1.6112E−02 0.9998

5.1 The unit disk with the singularity at the center

For this example, we consider the unit disk � = {(x, y) : x2 + y2 < 1}, with
homogeneous Dirichlet boundary conditions. If f = 4 − δ in (2), then the exact
solution is given by u = r

√
δ − r2. We recall that optimal order of convergence

for graded meshes will be achieved for grading parameters 0 < κ < 2−1/a for
0 < a < η = √

δ. We investigate the cases δ = 0.5, 0.25, 0.0625, with the most
detail given for δ = 0.5.

In the case δ = 0.5, errors and effectivities are reported in Table 1 for both graded
refinement and adaptive refinement as described above. We consider both κ = 0.375 ≈
2−√

2 and the more aggressive grading κ = 0.2. In each case, the errors decrease at the
optimal rate dim(Vn)

−1/2 ∼ N−1/2 in both norms, and the effectivities remain near
1 throughout the refinement process. We see that the adaptive refinement yields the
smallest errors for comparable problem sizes; with the less aggressive grading, κ =
0.375, faring a little better than κ = 0.2. Figure 4 contains triangulations generated
by each of the refinement approaches. As a matter of interest, we briefly indicate
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Fig. 4 Refined meshes for the unit disk, δ = 0.5: adaptive refinement driven by local indicators, N = 1,921
(top); graded refinement with κ = 0.375, N = 2,048 (bottom left); graded refinement with κ = 0.2, N =
2,048 (bottom right)

the convergence and effectivity behavior under uniform refinement, κ = 0.5. The
convergence behaviors in both norms were very similar, as before, having (least-
squares) convergence models C N−p for C between about 2.7 and 3.5, and p between
about 0.4 and 0.41. The effectivities decreased monotonically from 1.4186 to 0.9538
for the energy norm, and from 1.4729 to 1.0228 for the H1 semi-norm.

Although the approximate error function εn ≈ u − un was computed with respect
to the energy inner-product B, we now demonstrate empirically that εn can be used
to provide information about the Hessian u (recall (22)). Apart from demonstrating
that more than just energy norm error can be reliably extracted from εn , this Hessian
recovery has relevance to the discussion of the adaptive refinement employed in these
experiments, as indicated in the introduction to this section.

We note that u ∈ W 2,1(�)\H2(�), and

|u|W 2,1(�) =
∫

�

|uxx | + 2|uxy | + |uyy | dx ≈ 16.5531.

All digits shown above are correct. We approximate this norm via
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|εn|W 2,1(Tn)
=

∑
T ∈Tn

∫

T

|(εn)xx | + 2|(εn)xy | + |(εn)yy | dx .

Under each refinement scheme, the effectivity |εn|W 2,1(Tn)
/|u|W 2,1(�) improved from

roughly 1.32 on the coarsest triangulation to roughly 1.00 on the finest. So we see that
εn accurately encodes the Hessian of u. This will also be the case for the two choices
of δ that follow.

When δ = 0.25, our theory predicts optimal-order convergence for grading para-
meters 0 ≤ κ < 0.25. We restrict our attention to the energy norm, showing conver-
gence histories and effectivities graphically in Fig. 5, for adaptive refinement, graded
refinement with κ = 0.2, and uniform refinement (κ = 0.5). The adaptive and graded
refinement schemes yield optimal-order convergence, while the convergence is clearly
much worse under uniform refinement. The effectivities under each refinement scheme
are generally very good, with graded refinement producing the best results. We com-
pute |u|W 2,1(�) ≈ 19.48699 using Mathematica, and both the adaptive and graded
refinement schemes approximate this value with effectivities ranging between about
1.20 on the coarsest mesh and 1.00 on the finest.

We finally consider the case δ = 0.0625. Our theory predicts optimal-order con-
vergence for grading parameters 0 ≤ κ < 0.0625. We restrict our attention to the
energy norm, showing convergence histories and effectivities graphically in Fig. 6,
for adaptive refinement, graded refinement with κ = 0.06 and uniform refinement
(κ = 0.5). Also in this figure are a coarse and a modestly-refined mesh for κ = 0.06,
included to illustrate that some of the triangles in these graded meshes are strongly
anisotropic (needle-like). We believe that the strength of the singularity, r1/4 near the
origin, and the strongly anisotropic triangles (in the case of graded refinement) are the
primary reasons for the slightly sub-optimal convergence behavior. Empirically, more
refinements are needed to see the optimal convergence for strongly singular problems.
The effectivities remain quite reasonable. As before, we also consider the effectivity
in estimating |u|W 2,1(�) ≈ 23.37852; for the adaptive and graded refinement schemes,
the effectivities were never outside of the range [0.90, 1.16] and achieved their optimal
values of and 1.00 and 1.01 (respectively) on their finest meshes.
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Fig. 5 Errors (left) and effectivities (right) for the unit disk in the energy norm, δ = 0.25: adaptive
refinement driven by local indicators (square), graded refinement with κ = 0.2 (triangle), and uniform
refinement (circle). The solid line in the convergence plot has slope −1/2
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Fig. 6 Errors (top left) and effectivities (top right) for the unit disk in the energy-norm, δ = 0.0625:
adaptive refinement driven by local indicators (square), graded refinement with κ = 0.06 (triangle), and
uniform refinement (circle). The solid line in the convergence plot has slope −0.436. Graded meshes using
κ = 0.06, N = 32 (bottom left) and N = 2,048 (bottom right)

In order to illustrate the claim that the system for computing εn remains well-
conditioned as the mesh is refined (Theorem 3.6), we provide estimated condition
numbers for both the graded meshes and adaptively refined meshes. These were com-
puted by exporting the stiffness matrices to Matlab and using the eigs command to
determine the largest and smallest eigenvalues. These estimated condition numbers are
given for the diagonal rescaling Bd = D−1/2 B D−1/2 of the stiffness matrix B in Fig. 7.
Concerning the data for graded refinement, we use κ = 0.375 for δ = 0.5, κ = 0.2
for δ = 0.25, and κ = 0.06 for δ = 0.0625. It is clear from these graphs that the
adaptively refined meshes, which produce triangles of better shape overall, yield sys-
tems with better conditioning than their graded mesh counterparts; and the condition
numbers of the stiffness matrices for Wn remain bounded, while those for Vn grow
linearly with the problem size.

5.2 The sector of unit disk with the singularity at the origin

For this set of experiments, we consider the sector of the unit disk (centered at the
origin) for which 0 < θ < 7π/4. We impose homogeneous Dirichlet conditions on the
solid portion of the boundary and homogeneous Neumann conditions on the dashed
portion of the boundary—see Fig. 8. If f = (4 − δ − α2

j ) cos(α jθ) in (2), where
α j = (4 j + 2)/7 and j ≥ 0, then the exact solution is given by
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Fig. 7 Condition numbers for the Circle Problem. The top row provides conditioning information for the
stiffness matrices on Wn , and the bottom row for stiffness matrices on Vn . The left column concerns graded
refinement, and the right column adaptive refinement. In each case, the solid line corresponds to δ = 0.5,
the dashed line to δ = 0.25 and the dotted line to δ = 0.0625

Fig. 8 Sector of the unit disk, with mixed boundary conditions (left), and solution when α = α0 = 2/7
and δ = 1/16

u = (r

√
δ+α2

j − r2) cos(α jθ).

We note that v = r

√
δ+α2

j cos(α jθ) satisfies −�v + δr−2v = 0 in � as well as the
correct boundary conditions on the two straight edges of ∂�, so this type of singular
behavior is natural for the given problem. The function u was obtained fromv by adding
a term to give the right boundary value on the curved portion of the boundary without
altering the other boundary values, while keeping the data f smooth. It is, perhaps,
a bit surprising that the combination of a re-entrant corner and the r−2 singularity
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Fig. 9 Errors (left) and effectivities (right) for the sector in the energy-norm, δ = 0.0625: adaptive refine-
ment driven by local indicators (square), graded refinement withκ = 0.15 (triangle), and uniform refinement
(circle). The solid line in the convergence plot has slope −1/2

in the operator at this corner yields a solution with higher regularity than if the r−2

singularity in the operator had been located elsewhere.
Because the problems are no more difficult, in terms of the singularities produced in

u, than when the singular point 0 was in the interior of the domain, we only perform one
experiment. Taking δ = 1/16 = 0.0625 and j = 0, we give convergence and effectiv-
ity plots in Fig. 9 for adaptive refinement, graded refinement with κ = 0.15 < 2−1/η

(η = √
113/28 ≈ 0.379648), and uniform refinement (κ = 0.5). The convergence

rates for the adaptive and graded refinements are optimal, or nearly optimal; and the
convergence rate for uniform refinement is clearly sub-optimal, as expected. Although
none of the effectivities are bad, those for uniform refinement progressively deterio-
rate, and those for graded refinement are the best across all refinement levels.

5.3 L-shape with the singularity at the origin

Here we consider the Dirichlet problem

−�u + δr−2u = 1 in �, u = 0 on ∂�

on the L-shaped domain pictured in Fig. 10 (together with its initial triangulation),
having corners: (−1, 1), (3, −1), (3, 1), (1, 1), (1, 3), (−1, 3). The local regularity
index at the re-entrant corner (1,1) is 2/3. At the origin, the local regularity index is√
δ, as usual. We look at the case δ = 0.25, and compare adaptive, graded and uniform

refinements as before, for the energy norm. For graded refinements, we employ two
grading parameters, κ1 = 0.2 for the origin, and κ2 = 0.35 < 2−3/2 for the re-entrant
corner. In this case, we do not know the exact solution, so we plot only error estimates
to indicate convergence histories. The previous experiments have provided sufficient
evidence that these error estimates are trustworthy. The convergence plots show, as
before, that some sort of adapted meshes are needed, and that both the adaptive and
graded approaches yield optimal (or nearly optimal) convergence rates (Fig. 11).
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Fig. 10 On top, the L-shaped domain with initial triangulation (left), and solution when δ = 0.25. At
bottom, adaptive mesh with N = 2,122 (left), and graded mesh with N = 3,072

Fig. 11 Error estimates for the
L-shape in the energy-norm,
δ = 0.25: adaptive refinement
driven by local indicators
(square), graded refinement
(triangle), and uniform
refinement (circle). In the graded
refinement, two grading
parameters are used: κ1 = 0.2 at
the origin, and κ2 = 0.35 at the
re-entrant corner (see
Remark 3.8). The solid line in
the convergence plot has slope
−1/2
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5.4 Conclusions

Our numerical tests have clearly demonstrated that the hierarchical error estimate
provides both efficient and reliable error information in the energy and H1 norms, with
effectivities very close to one at all levels of refinement. In terms of convergence rates
and effectivities, there was no clear winner between graded meshes and the adaptively
refined ones. Adaptively refined meshes clearly outperform their graded counterparts
is in terms of the condition numbers of the stiffness matrices for the spaces Vn and
Wn , due to the generation or triangles with no extreme angles. However, we reiterate
that our theoretical results asserting optimal convergence rates and the asymptotic
equivalence of error and error estimate are proved only in the graded mesh setting.
To obtain analogous convergence results for adaptively refined meshes is challenging
even for much simpler problems posed in H1, though the basic framework for proofs
in that context is well-developed at this stage [18,23,38,42,49]. We note that, even
in this simpler setting, proofs of convergence for adaptivity driven by hierarchical
error estimates of the type put forth here have not yet been obtained—the paper [38]
proves adaptive convergence based on “hierarchical estimators”, but they use this term
for an explicit error estimate much like that of standard residual estimates, following
terminology used in [50] as opposed to [2,8].

Acknowledgments The authors thank Dr. Alan Demlow for helpful remarks concerning Lemma 4.3.
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