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Abstract. We prove the uniform convergence of the multigrid V -cycle on graded meshes for
corner-like singularities of elliptic equations on a bounded domain Ω ⊂ IR2. In particular, using some
weighted Sobolev space Km

a (Ω) and the method of subspace corrections with the elliptic projection
decomposition estimate on Km

a (Ω), we show that the multigrid V -cycle converges uniformly for
piecewise linear functions with standard smoothers (Richardson, weighted Jacobi, Gauss-Seidel,
etc.).
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1. Introduction

The multigrid method has proved to be one of the most efficient techniques to solve the large
systems of algebraic equations from the finite element discretization of elliptic boundary problems.
Many details on the convergence properties of the multigrid method for elliptic equations can be
found in monographs and survey papers by Bramble [11], Hackbusch[26], Trottenberg, Oosterlee
and Schüller [29], Xu [32] and the references there in.

It is well known that the geometry of the boundary and the change of the boundary condition
will influence the regularity of the solution [6, 9, 24, 25]. In particular, if a two-dimensional domain
possesses reentrant corners, cracks, or there exist abrupt changes of boundary conditions, the
solution of the elliptic boundary problem may have singularities in H2. We define the singularities
of these types the corner-like singularities, since they can be interpreted as corner singularities
(artificial vertices are needed when the boundary condition changes) [28]. Graded meshes [3, 7, 9]
are needed to obtain better numerical approximations to the solutions in these cases.

It is non-trivial to analyze the convergence rate of multigrid methods on such graded meshes
due to the lack of the regularity of the solution and the non-uniformity of the mesh. One result for
the uniform convergence of the multigrid method with the full regularity was given by Braess and
Hackbusch [10]; in Brenner’s paper [22], the analysis of the convergence rate for partial regularity
was presented; Bramble, Pasciak, Wang and Xu [15] developed the convergence estimate without
regularity assumptions with the L2-projection decomposition. In addition, on graded meshes,
based on the approximation property in [7], Yserentant [37] proved the uniform convergence of
the multigrid W -cycle for piecewise linear functions by applying a particular iterative method on
each level. There are also classical convergence proofs that use algebraic techniques and derive
convergence results based on assumptions related to, but nevertheless different from the regularity
of the underlying PDE [17, 30].
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In this paper, we shall use the elliptic projection decomposition estimate on the weighted Sobolev
space Km

a and the method of subspace corrections to prove the uniform convergence of the multigrid
V -cycle with standard subspace smoothers (Richardson, weighted Jacobi, Gauss-Seidel, etc.). To
date, this approach has been known to work only for problems with full elliptic regularity. The
reason we are able to obtain the uniform convergence result in cases of less regular solutions is
that we use special graded meshes, tuned up to capture the correct behavior of the solutions near
singularities.

Let Ω be a bounded polygonal domain or a domain with cracks in IR2. We consider the following
elliptic equation with mixed boundary conditions

(1)

 −∆u = f in Ω
u = 0 on ∂ΩD

∂u/∂n = 0 on ∂ΩN

as a prototype problem, where ΩD and ΩN are composed of segments of the boundary. Hence,
possible corner-like singularities may appear in the solution. Denote by H1

D(Ω) = {u ∈ H1(Ω)| u =
0 on ∂ΩD} the space of all the functions in H1(Ω) with trace 0 on ∂ΩD. Let Γj , 0 ≤ j ≤ J , be a
sequence of appropriately graded triangulations with triangles, which are nested on Ω. Denote by
Mj , 0 ≤ j ≤ J , the finite element space associated to the linear Lagrange triangle [23]. Then,

M0 ⊂M1 ⊂ . . . ⊂Mj ⊂ . . . ⊂MJ ⊂ H1
D(Ω).

We solve Equation (1) by looking for an approximation uJ ∈MJ , such that

a(uJ , vJ) = (AuJ , vJ) = (∇uJ ,∇vJ) = 〈f, vJ〉, ∀vJ ∈MJ , f ∈ (H1
D(Ω))′

where A is the elliptic operator and A = −∆ for Equation (1). Let NJ be the dimension of the
space MJ . The following quasi-optimal rate of convergence for the finite element approximation
uJ ∈MJ can be recovered on ΓJ ,

||u− uJ ||H1(Ω) ≤ CN
−1/2
J ||f ||L2(Ω).

To be more precise, let n be the number of iterations on each level. The main objective of this pa-
per is to prove the uniform convergence of the multigrid V -cycle with standard subspace smoothers
(Richardson, weighted Jacobi, Gauss-Seidel, etc.) for piecewise linear functions on graded meshes.
Moreover, we shall show that the convergence rate c satisfies

c ≤ c1

c1 + c2n
,

where c1 and c2 are constants related to the elliptic equation and the smoother, independent of the
mesh size. This will also provide a method to estimate the efficiency of other subspace smoothers
on graded meshes.

The rest of this paper is organized as follows. In Section 2, we shall introduce the weighted
Sobolev space Km

a (Ω) for the boundary value problem (1) and the method of subspace corrections.
We shall briefly describe the generation of the graded mesh on which the finite element solution con-
verges to the exact solution of (1) quasi-optimally. In Section 3, the approximation and smoothing
properties are followed by our main theorem.

2. Weighted Sobolev spaces and the method of subspace corrections

In this section, we shall first introduce the weighted Sobolev space Km
a (Ω) and the mesh refine-

ments to recover the quasi-optimal rates of convergence of the finite element solution. Then, we
shall describe the method of subspace corrections and the technique for estimating the norm of the
product of non-expensive operators.
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2.1. Weighted Sobolev spaces and graded meshes. Let (x, y) ∈ Ω be an arbitrary point and
S = {Si} be the set of (artificial) vertices of Ω, on which the solution has singularities in H2(Ω).
Denote by ri(x, y) the distance from (x, y) to the vertex Si ∈ S. Let ρ(x, y) =

∏
i ri be the smooth

function on Ω. Then, the weighted Sobolev space Km
a (Ω), m ≥ 0, is defined as follows [9, 27]

Km
a (Ω) = {u ∈ Hm

loc(Ω)| ρi+j−a∂i
x∂j

yu ∈ L2(Ω), i + j ≤ m}.

The Km
a -norm and seminorm for any function v ∈ Km

a (Ω) are

||v||2Km
a (Ω) :=

∑
i+j≤m

||ρi+j−a∂i
x∂j

yv||2L2(Ω)

|v|2Km
a (Ω) :=

∑
i+j=m

||ρm−a∂i
x∂j

yv||2L2(Ω).

Note that ρ behaves like the distance funciton ri(x, y) near the vertex Si. Thus, we have the
following proposition and mesh refinements as in [9, 28].

Proposition 2.1. We have |v|K1
1 (Ω)

=∼ |v|H1(Ω), ||v||K0
1 (Ω) ≥ C||v||L2(Ω) and the Poincare type

inequality ||v||K0
1 (Ω) ≤ C|v|K1

1 (Ω) for v ∈ K1
1 (Ω) ∩ {v|∂ΩD

= 0}.

By a =∼ b, we mean that there are positive constants C1, C2, such that C1b ≤ a ≤ C2b.
Let κ be the ratio of decay of triangles near the set S. Then, one can choose κ = 2−1/ε, for

∀ε < min(π/αi), where αi is the interior angle of vertex Si, and αi = 2π on the artificial vertices
where ∂ΩD and ∂ΩN meet. We assume that no triangle consists of more than one point in S and
any Si is a vertex of some triangle in the initial trianglulation. Let Γi = {Tk} be the triangulation
after i refinements. Then, for the i + 1th refinement, if the function ρ is bounded away from 0 on
a triangle, new triangles are generated by connecting the mid-points of the old triangle. However,
if Si is one of the vertices of triangle 4SiBC, we pick a point D on SiB and another point E on
SiC, such that the following holds for the ratios of the lengths

κ = SiD/SiB = SiE/SiC.

Then, triangle 4SiBC is divided into four triangles by connecting D, E, and the mid-point of BC.
(Fig. 2.1 and 2.2)

Fig. 2.1. Initial mesh Fig. 2.2. Triangulation after one refinement, κ = 0.2

We note that other refinements in [3, 7] also satisfy this condition although they follow different
constructions. We now conclude this subsection by restating the following theorem derived in
[9, 28].

Theorem 2.2. Let ui ∈Mi be the finite element solution of Equation (1). There exists a constant
B1 = B1(Ω, κ, ε), such that

||u− ui||H1(Ω) ≤ B1dim(Mi)−1/2||f ||K0
ε−1(Ω) ≤ B1dim(Mi)−1/2||f ||L2(Ω),
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for ∀f ∈ K0
ε−1(Ω), where Mi is the finite element space of linear functions on the graded mesh Γi

as described in Introduction.

2.2. The method of subspace corrections. Let H1
D(Ω) = {u ∈ H1(Ω)| u = 0 on ∂ΩD} be the

Hilbert space for Equation (1). Recall the graded triangulation Γj in the last subsection and the
finite element space Mj ∈ H1

D(Ω) of piecewise linear funcitons on Γj . In addition, since the meshes
are nested, we have

M0 ⊂M1 ⊂ . . . ⊂Mj ⊂ . . . ⊂MJ ⊂ H1
D(Ω).

Let A : H1
D(Ω) → (H1

D(Ω))′ be the differential operator for Equation (1). Then the weak form of
Equation (1) is

a(u, vi) = (Au, vi) = (−∆u, vi) = (∇u,∇vi) = 〈f, vi〉, ∀vi ∈Mi,

where the pairing (·, ·) is the inner product in L2(Ω). In addition, a(·, ·) is a continuous bilinear
form on H1

D(Ω)×H1
D(Ω) and also coercive by the Poincare inequality.

Meanwhile, let Qi, Pi : H1
D(Ω) → Mi, Ai : Mi → Mi be the orthogonal projections and the

restriction of A on Mi, respectively by:

(Qiu, vi) = (u, vi), ∀u ∈ H1
D(Ω),∀ui, vi ∈Mi,

a(Piu, vi) = a(ui, vi), (Aui, vi) = (Aiui, vi).

Let Ni = {xi
j} be the set of node points in Γi and φk(xi

j) = δj,k be the linear finite element nodal
basis function corresponding to node xi

k. Then the ith level finite element discretization reads as:
Find ui ∈Mi, such that

Aiui = fi,(2)

where fi ∈Mi satisfying (fi, vi) = 〈f, vi〉, ∀vi ∈Mi.
The standard multigrid backslash cycle algorithm solves (2) by the iterative method

ul
i = ul−1

i + Bi(fi −Aiu
l−1
i ).

The operator Bi : Mi →Mi, 0 ≤ i ≤ J is recursively defined as follows [33].

Algorithm 2.1. Let Ri ≈ A−1
i , i > 0, denote a local relaxation method. For i = 0, define

B0 = A−1
0 . Assume that Bi−1 : Mi−1 →Mi−1 is defined. Then,

1. Fine grid smoothing: For u0
i = 0 and k = 1, 2, · · · , n

uk
i = uk−1

i + Ri(fi −Aiu
k−1
i )

2. Coarse grid correction: Find the corrector ei−1 ∈Mi−1 by the iterator Bi−1

ei−1 = Bi−1Qi−1(fi −Aiui).

Then, Bifi = un
i + ei−1.

In addition, Let Bv
J be the corresponding operator defined for the multigrid V -cycle. Then, it

satisfies I −Bv
JAJ = (I −BJAJ)∗(I −BJAJ) [33] . With the above algorithm, we have

(I −BJAJ)u = u− un
J − eJ−1 = (I − TJ)u− eJ−1

= (I −BJ−1AJ−1)(I − TJ)u,

where Tj is a linear operator and Ti = RiAiPi and T0 = P0 for n = 1. A recursive application of
the above identity yields

(I −BJAJ) = (I − T0)(I − T1) · · · (I − TJ).

Define ||u||2a = a(u, u) = (Au, u) on Ω. Then, for the uniform convergence of the multigrid V -cycle,
we need to show that

||I −BJAJ ||2a ≤ c < 1,
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where c is independent of J .
Associated with each Ti, we introduce its symmetrization

T̄i = Ti + T ∗
i − T ∗

i Ti,

where T ∗
i is the adjoint operator of Ti with respect to the inner product a(·, ·). By a well-known

result of [34], we have the following estimate

||I −BJAJ ||2a =
c0

1 + c0
,

where

c0 ≤ sup
||v||a=1

J∑
i=1

a((T̄−1
i − I)(Pi − Pi−1)v, (Pi − Pi−1)v).

From this starting point to prove the uniform convergence,we will concentrate on the estimate
on the constant c0. One may notice that the above presentation is in terms of operators, while
the matrix representation of the iteration is often used in practice. We conclude this section by
providing the relation between the operator representation and the matrix representation.

Lemma 2.3. If RD is the corresponding matrix representation of the subspace smoother R : Mi →
Mi and AD is the matrix representation of A on Mi, then the following identities hold for u ∈Mi

and f ∈Mi

R(f) =
∑

j

(
∑

k

(RD)j,k(f, φk))φj

R(Au) =
∑

j

(
∑

k

(RD)j,k(ADul
D)k)φj ,

where (RD)j,k represents the common element of the jth row and the kth column of the matrix.

Proof. The subspace correction method in terms of operators on a certain level can be written in
the following way. Given the number of iterations n, then for ul ∈Mi and l < n,

ul = ul−1 + R(f −Aul−1).

Then, the inner product with φj leads to

(ul, φj) = (ul−1, φj) + (R(f), φj)− (R(Aul−1), φj).

By comparison, the corresponding iteration in the matrix representation is

ul
D = ul−1

D + RD(fD −ADuD),

with ul =
∑

j(u
l
D)jφj , (fD)j = (f, φj) and (AD)j,k = a(φj , φk). For a better presentation, we

introduce the mass matrix M , such that Mj,k = (φj , φk). Thus, we have the following relations
between the functions ul, ul−1 and the vectors ul

D, ul−1
D ,

(ul, φj) = (Mul
D)j , (ul−1, φj) = (Mul−1

D )j .

Therefore, taking the matrix representation of the iteration into account, since they are equivalent,
we have

(R(f), φj) = (MRDfD)j , (R(Aul−1), φj) = (MRDADuD)j .

Based on the definition of fD and M , the linear operator R is defined as follows,

R(f) =
∑

j

(
∑

k

(RD)j,k(f, φk))φj .
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As for R(Aul), since (Aul, φj) = a(ul, φj) = (ADul
D)j ,

R(Aul) =
∑

j

(
∑

k

(RD)j,k(Aul, φk))φj

=
∑

j

(
∑

k

(RD)j,k(ADul
D)k)φj ,

which completes the proof. �

3. Uniform convergence of the multigrid method on graded meshes

We now are going to estimate the constant c0 introduced in Section 2 and to give the main
theorem in this paper. For the proof of the uniform convergence, we shall start with some lemmas
first. To better explain our results, we assume there is only one vertex S0 of Ω, on which the
solution of Equation (1) has a singularity in H2(Ω). The same argument, however, will work on
domains with multiple singular vertices. Recall the way we refine the mesh in Section 2. Denote by
TS0

i the initial triangles with vertex S0. Thus, the mesh generation contains the following. After
N refinements, ∪TS0

i is chopped into N + 1 sub-domains Dn, 0 ≤ n ≤ N , such that ρ(x, y) =∼ κn

on Dn for 0 ≤ n < N and ρ(x, y) ≤ CκN on DN . Then, sub-triangles are generated in these layers
and the mesh size on Dn is O(κn2n−N ), for 0 ≤ n ≤ N . (Fig. 3.1 and 3.2)

Fig. 3.1. Initial triangles with vertex S0 Fig. 3.2. Layer D0 and D1 after one refinement, κ = 0.2

Note that Ω = (∪Dn)∪ (Ω\∪Dn). Let ∂Dn be the boundary of Dn. Then, we define a piecewise
constant function rp(x, y) on Ω̄ as follows. Let the restriction of rp on every TS0

i ∩Dn be a constant,
such that

rp(x, y) =
{

(1/2κ)n on D̄n\∂Dn−1, for 1 < n ≤ N
1 otherwise,

where N is the number of refinements. Thus N = 1 for Γ1, N = 2 for Γ2, and N = i for Γi. Recall
that ε < 1 is the parameter in κ, such that κ = 2−1/ε.

Denote by (·, ·)rp the weighted inner product with respect to rp,

(u, v)rp = (rpu, rpv) =
∫

Ω
r2
puv.

Then, we have the estimate below.

Lemma 3.1.

(ui − Pi−1ui, ui − Pi−1ui)rp ≤
c1

Ni
a(ui, ui), ∀ui ∈Mi.

where Ni = O(22i) is the dimension of Mi
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Proof. This lemma can be proved by the duality argument as follows.
Consider the following boundary value problem −∆w = r2

p(ui − Pi−1ui) in Ω
w = 0 on ∂ΩD

∂w/∂n = 0 on ∂ΩN

Then, since Pi−1w ∈Mi−1, we have

(rp(ui − Pi−1ui), rp(ui − Pi−1ui)) = (r2
p(ui − Pi−1ui), ui − Pi−1ui)

= (∇w,∇(ui − Pi−1ui))
= (∇(w − Pi−1w),∇(ui − Pi−1ui)).

We note that ∆w is a piecewise function on triangulation Γi that is derived after i refinements.
Then, based on the arguments in Theorem 2.2, we have

|w − Pi−1w|2H1(Ω) ≤ (C1/Ni−1)||∆w||2K0
ε−1(Ω)

= (C1/Ni−1)(
i∑

n=0

||ρ1−ε∆w||2L2(Dn) + ||ρ1−ε∆w||2L2(Ω\∪Dn))

≤ (C/Ni−1)(
i∑

n=0

||κn(1−ε)∆w||2L2(Dn) + ||∆w||2L2(Ω\∪Dn))

= (C/Ni−1)(
i∑

n=0

||2n2−
n
ε ∆w||2L2(Dn) + ||∆w||2L2(Ω\∪Dn))

= (C/Ni−1)(
i∑

n=0

||2nκn∆w||2L2(Dn) + ||∆w||2L2(Ω\∪Dn))

= (C/Ni−1)(
i∑

n=0

||r−1
p ∆w||2L2(Dn) + ||∆w||2L2(Ω\∪Dn)) = (C/Ni−1)||r−1

p ∆w||2L2(Ω).

Note that Ni = O(Ni−1). Therefore, we have the following estimates to complete the proof,

||ui − Pi−1ui||2rp
≤

|w − Pi−1w|2H1 |ui − Pi−1ui|2H1

||(ui − Pi−1ui)||2rp

=
|w − Pi−1w|2H1 |ui − Pi−1ui|2H1

||r−1
p ∆w||2

L2

≤ c1

Ni
|ui − Pi−1ui|2H1 ≤

c1

Ni
a(ui, ui).

�

We here state another lemma regarding the smoother R̄i on Mi, where R̄i is the symmetrization
of Ri, R̄i = Ri + Rt

i −Rt
iAiRi.

Lemma 3.2. For any subspace smoother R̄i : Mi →Mi, assume its corresponding matrix repre-
sentation R̄D satisfies

V t
DR̄DVD ≥ CV t

DVD, ∀VD ∈ Rk, C > 0,

on every level i, where C is a constant independent of i, and k is the dimension of R̄D. Then, the
following estimate holds for the graded mesh Γi,

c2

Ni
(R̄iv, v) ≤ (R̄iv, R̄iv)rp , ∀v ∈Mi,
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where Ni is the the dimension of Mi as in Lemma 3.1.

Proof. For any v =
∑

j(VD)jφj ∈Mi, from Lemma 2.3, we have

(R̄iv, v) = (
∑

k

(R̄DMVD)kφk,
∑

j

(VD)jφj) = V T
D MR̄DMVD.

(R̄iv, R̄iv)rp = (
∑

j

(R̄DMVD)jrpφj ,
∑

k

(R̄DMVD)krpφk)

= V T
D MR̄DM̃R̄DMVD,

where M is the mass matrix and (M̃)j,k = (rpφj , rpφk). Note that both M and M̃ are symmetric
positive definite (SPD). Hence, M̃ =∼ 1/Ni, since the mesh size at the support of φj is O(κn2n−i)
and rp = (1/2κ)n if the support is sitting in Dn. Thus, by setting ξ = R̄

1/2
D MVD, to complete the

proof, it is equivalent to show that

ξT R̄
1/2
D M̃R̄

1/2
D ξ ≥ (C1/Ni)ξT ξ.

From our estimates on M̃ , we have

ξT R̄
1/2
D M̃R̄

1/2
D ξ =∼ (1/Ni)ξT R̄Dξ ≥ (C/Ni)ξT ξ.

�

Remark 3.3. Recall the definition of the graded mesh. The triangles are shape-regular elements
and the minimum angle of the triangles are bounded from 0. Therefore, (AD)i,j = O(1) and the
maximum eigenvalue of AD is bounded. In fact, one can verify that standard smoothers (Richard-
son, weighted Jacobi, Gauss-Seidel, etc.) satisfy Lemma 3.2, since (RD)i,j = O(1). Moreover, if RD

is SPD and the spectral radius ρ(RDAD) ≤ ω, for 0 < ω < 2, then a(RiAiv, v) = (AiRiAiv, v) =
V T

D ADRDADVD < ωa(v, v). The last identity is from the similarity of the matrix A
1/2
D RDA

1/2
D and

the matrix RDAD. Hence, a(RiAiv, v) ≤ ωa(v, v) for standard smoothers.

Before we state our main theorem, we shall introduce some notation that will be used in the
proof. Recall the operator Ti. Denote by Ri a subspace smoother satisfy Lemma 3.2 and the
spectral radius ρ(RiAi) ≤ ω for 0 < ω < 2. Let Rt

i be the adjoint of Ri with respect to (·, ·). We
can apply Ri and Rt

i alternatively with n smoothings on the ith level. We also define the operator
Gi and G∗

i as follows,

Gi = I −RiAi, G∗
i = I −Rt

iAi.

With this type of subspace correction, we have

Ti =

{
Pi − (G∗Gi)

n
2 Pi for even n

Pi −Gi(G∗
i Gi)

n−1
2 Pi for odd n

Therefore, if we define

Gi,n =
{

G∗
i Gi for even n

GiG
∗
i for odd n,

since P 2
i = Pi, the presentation for T̄i is

T̄i = Ti + T ∗
i − T ∗

i Ti = (I −Gn
i,n)Pi.

With this setting-up, the uniform convergence of the multigrid method can be proved as follows.
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Theorem 3.4. On every triangulation Γi, suppose that the smoother on each subspace Mi satisfies
Lemma 3.2. Then we have ||I −BJAJ ||2a = c0

1+c0
≤ c1

c1+c2n .

Proof. To estimate the constant c0, we consider the decomposition v =
∑

i vi for any v ∈MJ with

vi = (Pi − Pi−1)v.

Since Pi−1 = Pi−1Pi = PiPi−1, Lemma 3.1 implies that

Ni(vi, vi)rp ≤ c1a(vi, vi).(3)

By the identity of Xu and Zikatanov [34] and the conditions in Lemma 3.2, we have

a(T̄−1
i (I − T̄i)vi, vi) = a((I −Gn

i,n)−1Gn
i,nvi, vi)

= (R̄−1
i R̄iAi(I −Gn

i,n)−1Gn
i,nvi, vi)

= (R̄−1
i (I −Gi,n)(I −Gn

i,n)−1Gn
i,nvi, vi)

≤ maxt∈[0,1](I − t)(I − tn)−1tn(R̄−1
i vi, vi)

≤ 1
n

(R̄−1
i vi, vi) ≤

Ni

c2n
(vi, vi)rp .

On the other hand, from the relation in (3),
J∑

i=0

a(T̄−1
i (I − T̄i)vi, vi) ≤

J∑
i=1

Ni

c2n
(vi, vi)rp ≤

J∑
i=0

c1

c2n
a(vi, vi) =

c1

c2n
a(v, v).

Therefore, c0 ≤ c1
c2n and consequently, the method of subspace corrections has the following con-

vergence estimate for the multigrid V -cycle:

||I −BJAJ ||2a =
c0

1 + c0
≤ c1

c1 + c2n
,

which completes the proof. �
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