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A-PRIORI ANALYSIS AND THE FINITE ELEMENT METHOD
FOR A CLASS OF DEGENERATE ELLIPTIC EQUATIONS

HENGGUANG LI

Abstract. Consider the degenerate elliptic operator Lδ := −∂2
x − δ2

x2 ∂2
y on

Ω := (0, 1) × (0, l), for δ > 0, l > 0. We prove well-posedness and regu-
larity results for the degenerate elliptic equation Lδu = f in Ω, u|∂Ω = 0
using weighted Sobolev spaces Km

a . In particular, by a proper choice of the
parameters in the weighted Sobolev spaces Km

a , we establish the existence
and uniqueness of the solution. In addition, we show that there is no loss of
Km

a -regularity for the solution of the equation. We then provide an explicit
construction of a sequence of finite dimensional subspaces Vn for the finite ele-
ment method, such that the optimal convergence rate is attained for the finite

element solution un ∈ Vn, i.e., ||u − un||H1(Ω) ≤ Cdim(Vn)−
m
2 ||f ||Hm−1(Ω)

with C independent of f and n.

1. Introduction

Let Ω be the rectangular domain (0, 1)× (0, l) for l > 0, and define the operator
Lδ as follows:

Lδ := −∂2
x − δ2

x2
∂2

y , δ > 0.

We then consider a class of degenerate elliptic equations on Ω corresponding to Lδ

with the Dirichlet boundary condition

(1)
{

Lδu = f in Ω,
u = 0 on ∂Ω.

Equations of this type often appear in fluid dynamics, especially in mathematical
models of fuel cells [32, 48]. Therefore, the mathematical study on equation (1) is
of practical importance.

Denote by u the solution of equation (1). Let Ωξ := (0, ξ) × (0, l), 0 < ξ < 1,
and Sξ := Ω\Ωξ be subsets of Ω, depending on ξ. Denote by Pr ⊂ Ω, an arbitrary
open subset containing the neighborhoods of the vertices (1, 0) and (1, l). Then,
the strong ellipticity of the operator Lδ on Sξ\Pr implies that there exists a unique
solution u ∈ Hm+1(Sξ\Pr) ∩ {u|∂Ω = 0} for any f ∈ Hm−1(Ω) [26, 46].

However, it is well known that this result does not extend to the entire do-
main Ω in general, because of the loss of ellipticity at x = 0 and the possible
singularities of the solution arising from the corners. In fact, it is generally im-
possible to find a solution u ∈ Hm+1(Ω) for large m, even if the given data is
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smooth f ∈ C∞(Ω). Various techniques have been used to investigate different
degenerate elliptic equations, usually depending on the character of the degener-
acy. For example, see Boimatov [17], Felli and Schneider [27], French [28], Langlais
[37], and references therein. In particular, Gopalakrishnan and Pasciak [29] stud-
ied the multigrid method for the axisymmetric Laplace and Maxwell equations, in
which singular coefficients of a different kind were considered; Bramble and Zhang
[18] estimated the multigrid method for a similar anisotropic equation, based on a
regularity result in a weighted L2 space, and on the corresponding finite element
approximation property for a special “energy norm” by assuming the existence of
a global H2 solution.

In this paper, inspired by the methods of Babuska and Aziz [9], Bacuta, Nistor,
and Zikatanov [15, 16], and Kondratiev [34], we shall study the well-posedness
and regularity of the solution of equation (1) in the following weighted Sobolev
space Km

a (Ω). Let ρ be a smooth function, such that ρ = the distance to the set
{(1, 0), (1, l), [0, y] for 0 ≤ y ≤ l} in the neighborhood of it. Also, we denote by r1

and r2 the distance functions to (1, 0) and (1, l), respectively. Then, we define

Km
a (Ω) := {v ∈ L2

loc(Ω), ρ−a(r1r2)i+j(x∂x)i∂j
yv ∈ L2(Ω), i + j ≤ m}.

See Definition 2.1 for more discussions. The well-posedness of the solution u in
these spaces will be proved, and consequently, we shall show that there is no loss
of Km

a -regularity for the solution of equation (1).
Another main result of this paper is regarding the numerical approximation

by the finite element method (FEM). Let Vn be a sequence of finite dimensional
subspaces for the FEM. Denote by un ∈ Vn the corresponding discrete solution.
Then, we shall provide a simple, explicit way to construct a sequence of finite
dimensional subspaces Vn ⊂ H1

0 (Ω), such that un satisfies

||u − un||H1(Ω) ≤ Cdim(Vn)−m/2||f ||Hm−1(Ω),

where f ∈ Hm−1(Ω) is arbitrary and C is a constant that depends on Ω and m, but
not n or f . Namely, one can recover the optimal rate of convergence that is expected
for smooth solutions [9, 19, 21]. Comparing with the regularity and approximation
estimates in [18], here we provide regularity results in weighted Sobolev space of
order m, m ≥ 1, with least assumptions on u and f . Besides producing numerical
solutions with high-order rates of convergence, our construction of the special finite
dimensional subspaces is suitable for any f ∈ L2(Ω), in which case, u /∈ H2(Ω) in
general.

In addition, according to the result of Babuska and Aziz [10], the maximum angle
of the triangles in the triangulation for the FEM should be bounded away from π,
such that a uniform error estimate can be obtained in the usual Sobolev spaces Hm

on each triangle. Otherwise, the energy norm of the error |u − un|H1 on Ω might
be difficult to control. In our construction of subspaces Vn, however, thin triangles
that violate this maximum-angle condition will appear. In fact, the maximum angle
in the triangles will keep increasing with π as the limit. We shall show that the
difficulty for the estimates in this case can be overcome by a homogeneity argument
in weighted Sobolev spaces.

In Section 2, we shall introduce our weighted Sobolev spaces Km
a (Ω) and some

notation that will be used throughout this paper. The properties of Km
a (Ω) that

are important for the regularity of the solution will be studied in detail.
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In Section 3, we shall prove the well-posedness and regularity of the solution in
Km

a (Ω). Denote by (v1, v2) the L2 inner product of v1, v2 ∈ H0(Ω) = L2(Ω). The
corresponding weak solution u ∈ K1

1(Ω) ∩ {u|∂Ω = 0} of equation (1) is defined by

a(u, v) := (∂xu, ∂xv) + δ2(
1
x

∂yu,
1
x

∂yv) = 〈f, v〉, ∀v ∈ K1
1(Ω) ∩ {v|∂Ω = 0}.

Furthermore, we prove that, for m ≥ 0, there exists a constant η > 0, such that

Lδ = −∂2
x − δ2

x2
∂2

y : Km+1
1+ε (Ω) ∩ {u|∂Ω = 0} → Km−1

−1+ε(Ω), ∀|ε| < η,

defines an isomorphism, while it is Fredholm iff ε is away from a specific countable
set of values.

In Section 4, we will analyze the numerical solution un for equation (1). Explic-
itly, we will look for un ∈ Vn satisfying

a(un, vn) = (f, vn), ∀vn ∈ Vn.

To better explain our results, let us recall some basic results in classical approxima-
tion theory [19, 21, 24]. Denote by T = {Ti} the triangulation of Ω with triangles.
Let V = V (T , m + 1) be the finite element space associated to the degree m La-
grange triangle [21], such that V consists of polynomials of degree ≤ m on each
triangle Ti ∈ T . Let uV ∈ V be the finite element solution of equation (1). For any
continuous solution u, denote by uI ∈ V (T , m + 1) the nodal interpolation asso-
ciated to u, which is uniquely determined by the condition u(xi) = uI(xi) for any
node. Also, a symmetric bilinear form a(·, ·) induces an equivalent norm || · ||a on
a normed space, provided that a(·, ·) is both continuous and coercive on this space.
As a result from Section 3, we shall show that || · ||K1

1
and || · ||a are equivalent norms

on Ω. Therefore, based on Céa’s Lemma [19], we have the following inequality:

||u − uV ||K1
1(Ω) ≤ C||u − uI ||K1

1(Ω).

The constant C in the expression is independent of the triangulation T and of the
solution u. From our estimates on the interpolation error ||u − uI ||K1

1(Ω), we shall
construct a class C(l, h, κ, m, ε) of partitions T of Ω = (0, 1)×(0, l), l > 0, such that

||u − uV ||H1(Ω) ≤ Cdim(V )−m/2||f ||Hm−1(Ω), ∀f ∈ Hm−1(Ω).

More details about the notation and proof will be given in Section 4.
In Section 5, numerical results will be presented for the operator L1 := −∂2

x −
1
x2 ∂2

y on Ω̂ := (0, 1) × (0, 10) with a smooth f . We will compare the rates of
convergence of the numerical solutions for different mesh sizes. The convergence
history will verify our theoretical prediction and demonstrate the efficiency of our
technique to approximate the solution.

2. Weighted Sobolev spaces Km
a

As explained above, weighted Sobolev spaces are convenient for the problem since
the solution u may not belong to Hm+1(Ω) for large m, even if f ∈ C∞(Ω). In this
section, we shall introduce the weighted Sobolev spaces Km

a (Ω) and establish some
properties of them, which are useful for the study of the boundary value problem
(1). One can refer to [11, 23, 34, 35, 36] for more information and additional results
on Sobolev spaces with weights.
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Figure 1. Domain Ω and distances.

2.1. Notation. As usual, the regular Sobolev spaces Hm(Ω) on the domain Ω for
m ∈ {0, 1, 2, . . .} are defined as follows [26]:

Hm(Ω) = {v ∈ L2(Ω), ∂αv ∈ L2(Ω), ∀|α| ≤ m},
with the multi-index α = (α1, α2) ∈ Z

2
+, |α| := α1 + α2 and ∂α := ∂α1∂α2 . The

Hm-norm of any v ∈ Hm(Ω) is defined by

||v||2Hm(Ω) :=
∑

|α|≤m

||∂αv||2L2(Ω),

where the L2-norm is

||v||2L2(Ω) =
∫

Ω

|v|2dxdy.

Let X(x, y) ∈ Ω be an arbitrary point in the domain Ω. To define weighted
Sobolev spaces Km

a on the domain Ω, we denote by r1(x, y) and r2(x, y) two smooth
functions, such that r1(x, y) = the distance from X(x, y) to (1, 0), if the distance
< 1

4 ; r2(x, y) = the distance from X(x, y) to (1, l), if the distance < 1
4 ; 1

4 ≤ r1, r2 ≤ 1
otherwise. In addition, we require that both r1(x, y) and r2(x, y) are equal to 1 if
x < 1

2 . (Figure 1). The above distances are used in the definition of the spaces Km
a

and play an important role in reflecting the properties of the solution of equation (1)
near the vertices (1, 0), (1, l) [14]. Denote by S = {(1, 0), (1, l), [0, y], 0 ≤ y ≤ l}
the set containing the vertices and the degenerate boundary of the domain. Then,
we define the weighed Sobolev spaces Km

a on Ω as follows.

Definition 2.1. Let R := {x < 1
2} ∪ {ri < 1

4 , i = 1, 2} ⊂ Ω be a subset of
the domain. Let ρ(x, y) be a positive smooth function, such that ρ stands for
the distance from X(x, y) to the set S for any X(x, y) ∈ R, and ρ satisfies that
1
4 ≤ ρ ≤ 1 for any point in the region Ω\R. Therefore, ρ = x in the neighborhood
of the degenerate boundary; ρ = r1 and ρ = r2 in the neighborhoods of (1, 0) and
(1, l), respectively. Then, for i, j, m ∈ {0, 1, 2, . . .}, the mth weighted Sobolev space
is

Km
a (Ω) := {v ∈ L2

loc(Ω), ρ−a(r1r2)i+j(x∂x)i∂j
yv ∈ L2(Ω), i + j ≤ m}.

The Km
a -norm for any function v ∈ Km

a (Ω) is

||v||2Km
a (Ω) :=

∑
i+j≤m

||ρ−a(r1r2)i+j(x∂x)i∂j
yv||2L2(Ω).
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By L2
loc(Ω), we mean the space that includes all the functions on Ω, whose

restriction to any compact subset A ⊂ Ω is in L2(A). Also, we denote by Hm
c (Ω)

the space of functions that belong to Hm(A) for any compact subset A ⊂ Ω. In
addition, we set Ωξ := (0, ξ) × (0, l) ⊂ Ω, 0 < ξ < 1, and Sξ := Ω\Ωξ to be two
particular subsets that will be used very often in the text.

Since ρ−a(r1r2)i+j(x∂x)i∂j
yv ∈ L2(Ω), ∀v ∈ Km

a (Ω), the completeness of the
space Km

a (Ω) then follows the completeness of L2(Ω) and integration by parts with
standard arguments in [1, 26]. Moreover, Km

a (Ω) is a Hilbert space associated with
the inner product

(u, v)Km
a

=
∑

i+j≤m

∫
Ω

(ρ−2a(r1r2)2(i+j)(x∂x)i∂j
yu(x∂x)i∂j

yv)dxdy.

Recall that for regular Sobolev spaces Hm(Ω) [19, 26, 46], m > 0, the space
H−m(Ω) is the dual space of Hm

0 (Ω), where Hm
0 (Ω) is defined [1] as follows,

Hm
0 (Ω) = {v ∈ Hm(Ω), ∂iv|∂Ω = 0, i < m}.

Similarly, we denote by K−m
−a (Ω) ∼= (Km

a (Ω)∩{v|∂Ω = 0})′ the dual space of Km
a (Ω)∩

{v|∂Ω = 0} with respect to the pivot space L2(Ω),

||w||K−m
−a (Ω) := sup

v∈Km
a (Ω)∩{v|∂Ω=0}

|
∫
Ω

vw|
||v||Km

a (Ω)
, v �= 0.

We also agree that if ||v||Km
a (Ω) = ∞, then v is not in Km

a (Ω).

Remark 2.2. The parameters in the spaces Km
a (Ω) are related to the distances to

the vertices (1, 0), (1, l) and to the degenerate boundary x = 0, where one may
see singularities of the solution. It is clear that equation (1) is strongly elliptic in
the small neighborhoods of (1, 0) and (1, l) with the coefficient frozen in x at those
points. In fact, near the vertices (1, 0) and (1, l), the spaces Km

a (Ω) are the usual
weighted Sobolev spaces for elliptic equations on corner singularities [9, 15, 34];
while in the neighborhood of x = 0, Km

a (Ω) can be considered as the usual weighted
spaces in polar coordinates, by setting r = x and θ = y. Our weighted Sobolev
spaces are invented in a way that is based on the property of the operator Lδ

and the geometry of the domain. For this reason, some properties of Km
a (Ω) are

important for the study of the regularity of the solution and for the construction
of the finite dimensional subspaces in the FEM.

Throughout this paper, our notation will follow what we have introduced in this
subsection. Based on the definition of the weighted Sobolev space, we shall give
some observations and lemmas for Km

a (Ω).

2.2. Lemmas. Here we summarize several properties for the spaces Km
a (Ω) that

are useful for the development of the theorems in Section 3 and Section 4. Most of
the properties are derived from straightforward calculation based on the definition
of Km

a (Ω). For the reason that most functions we are interested in are defined on Ω,
we shall omit Ω in the notation Km

a (Ω) and Hm(Ω), which are used often below, to
simplify the expression. Therefore, Km

a = Km
a (Ω) and Hm = Hm(Ω) for the rest of

this paper. Moreover, a � b means that there exist constants C1, C2 > 0, such that
C1b ≤ a ≤ C2b. By an isomorphism, we shall mean a continuous bijection between
two Banach spaces. As usual, we denote by r and θ the corresponding variables in
the polar coordinates.
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The first lemma claims an alternative definition for the space Km
a .

Lemma 2.3. Denote by Px ⊂ Ω, Pr1 ⊂ Ω and Pr2 ⊂ Ω the small neighborhoods of
x = 0 and the vertices (1, 0), (1, l), respectively. Then, for Pr = Pr1 ∪ Pr2 , we have

Km
a = {u ∈ Hm

c (Ω), ρ−a(r∂r)i∂j
θu ∈ L2(Pr), ρ−a(x∂x)i∂j

yu ∈ L2(Px), ∀i + j ≤ m}.

Proof. On the outside of P = Px∪Pr, u ∈ Hm(Ω\P ) is equivalent to u ∈ Km
a (Ω\P ),

since ρ, r1, r2 and x are all bounded from above and bounded away from 0 by the
definition.

On the region Px, we notice ρ = x and r1 = r2 = 1. Therefore,

||ρ−a(r1r2)i+j(x∂x)i∂j
yu||L2(Px) = ||ρ−a(x∂x)i∂j

yu||L2(Px).

On Pri
, i = 1, 2, we freeze the coefficient of Lδ in x at the vertex and change the

variables x, y into r, θ for the polar coordinates centered at the vertex, then

∂x = cos(θ)∂r −
sin(θ)

r
∂θ,

∂y = sin(θ)∂r +
cos(θ)

r
∂θ,

where ρ = r1 = r on Pr1 and ρ = r2 = r on Pr2 . The proof then follows from

||ρ−ari+j(cos(θ)∂r −
sin(θ)

r
∂θ)i(sin(θ)∂r +

cos(θ)
r

∂θ)ju||L2(Pri
)

� ||ρ−a
∑

h+k≤i+j

(r∂r)h∂k
θ u||L2(Pri

). �

Lemma 2.4. The function ρ−b(r1r2)i+j(x∂x)i∂j
yρb is bounded on Ω.

Proof. On the region Pr where ρ = r1 = r or ρ = r2 = r, we follow the notation
in Lemma 2.3, and change to the polar coordinates centered at the vertices. Since
(r∂r)krb = bkrb and ∂θr = 0, we have

|ρ−b(r1r2)i+j(x∂x)i∂j
yρb| = |r−b(r1r2)i+j(x∂x)i∂j

yrb|
≤ C1|r−bri+j∂i

x∂j
yrb|

= C1|r−bri+j(cos(θ)∂r −
sin(θ)

r
∂θ)i(sin(θ)∂r +

cos(θ)
r

∂θ)jrb|

≤ C|r−b
∑

k+h≤i+j

(r∂r)k∂h
θ rb|

≤ C|r−b
∑

k≤i+j

(r∂r)krb| = C|
∑

k≤i+j

bk|.

Therefore, ρ−b(r1r2)i+j(x∂x)i∂j
yρb is bounded on Pr.

On the region Px where ρ = x, we have (x∂x)iρb = biρb and ∂yρ = 0. Thus, the
proof follows

|ρ−b(r1r2)i+j(x∂x)i∂j
yρb| = |ρ−b(x∂x)i∂j

yρb|
= |ρ−b(x∂x)iρb| = C|bi|.

As for Ω\P , the complement of P = Px ∪ Pr, since ρ is smooth and bounded
away from 0, the function ρ−b(r1r2)i+j(x∂x)i∂j

yρb is bounded. Thus, the proof is
completed. �
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Consequently, Lemma 2.4 shows

Lemma 2.5. For the spaces Km
a , ρbKm

a = Km
a+b, where ρbKm

a = {ρbv, ∀v ∈ Km
a }.

Therefore, the multiplication by ρb defines an isomorphism Km
a → Km

a+b.

Proof. Let v ∈ Km
a and w = ρbv. Then |ρ−a(r1r2)i+j(x∂x)i∂j

yv| ∈ L2, for i+j ≤ m.
Moreover, we have

|ρ−a−b(r1r2)i+j(x∂x)i∂j
yw| = |ρ−a−b(r1r2)i+j(x∂x)i∂j

yρbv|

= ρ−a−b(r1r2)i+j |
∑

k≤i,h≤j

(x∂x)k∂h
y ρb(x∂x)i−k∂j−h

y v|

≤ C
∑

k≤i,h≤j

|ρ−a(r1r2)i+j−k−h(x∂x)i−k∂j−h
y v| ∈ L2.

The last inequality is the consequence of Lemma 2.4. Thus, ρbKm
a is continuously

embedded in Km
a+b. On the other hand, because this embedding holds for any real

number b, we have the opposite

Km
a+b = ρbρ−bKm

a+b ⊂ ρbKm
a ,

which completes the proof. �

Recall that Ωξ = (0, ξ) × (0, l), 0 < ξ < 1. From a direct verification based on
the definitions of Hm and Km

a , we can also derive the following lemma.

Lemma 2.6. We have K0
0 = L2 and for m′ ≤ m, a′ ≤ a,

1. Km
a ⊂ Km′

a′ ,
2. ||u||Km′

a′ (Ωξ) ≤ ξa−a′ ||u||Km
a (Ωξ), ∀u ∈ Km

a , ξ < 1
2 .

Proof. The first item in the lemma is the result of the inequality below. For any
u ∈ Km

a and m′ ≤ m, a′ ≤ a,∑
i+j≤m′

||ρ−a′
(r1r2)i+j(x∂x)i∂j

yu||2L2 ≤ C
∑

i+j≤m

||ρ−a(r1r2)i+j(x∂x)i∂j
yu||2L2 .

Note that on Ωξ, ξ < 1
2 , we have ρ = x, r1 = r2 = 1. Then the second item in

this lemma follows

||u||2Km′
a′ (Ωξ)

=
∑

i+j≤m′

||ρ−a′
(r1r2)i+j(x∂x)i∂j

yu||2L2(Ωξ)

≤
∑

i+j≤m

||ρ−a′
(r1r2)i+j(x∂x)i∂j

yu||2L2(Ωξ)

= ξ2(a−a′)
∑

i+j≤m

||ξa′−aρ−a′
(r1r2)i+j(x∂x)i∂j

yu||2L2(Ωξ)

≤ ξ2(a−a′)
∑

i+j≤m

||ρ−a(r1r2)i+j(x∂x)i∂j
yu||2L2(Ωξ)

= ξ2(a−a′)||u||2Km
a (Ωξ). �

We note that the weights defined in Km
a only depend on the distances to certain

parts of the boundary. From Lemma 2.3, we obtain that the Hm- and Km
a -norm

are equivalent on any compact subset A ⊂ Ω.
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Lemma 2.7. Let ξ be a positive number, and let G ⊂ Ω be an open subset such
that r ≥ ξ on G. Then ||u||Hm(G) ≤ M1||u||Km

a (G) and ||u||Km
a (G) ≤ M2||u||Hm(G),

for any u ∈ Hm(G), where the constants M1 and M2 only depend on ξ and m.

Proof. As stated in Lemma 2.3, the parameters ρ, r1, r2 and x in the expression of
Km

a -norm are all bounded from 0 on G, since the distance from G to the set S has a
lower bound ξ. Then, the proof follows the definitions of the spaces and the norms
involved. �

The following lemma states the relation between Hm and Km
a on Ω.

Lemma 2.8. On Ω, ||u||Hm ≤ M1||u||Km
m

, and ||u||Km
a

≤ M2||u||Hm for a ≤ 0,
where M1 and M2 depend on m and a.

Proof. This lemma is basically a consequence of the definitions of those norms.
Recall P, Px and Pr from Lemma 2.3. Then, based on i + j ≤ m and ρ = x on Px,

||u||2Km
m(Px) =

∑
i+j≤m

||ρ−m(x∂x)i∂j
yu||2L2(Px)

≥ C
∑

i+j≤m

||∂i
x∂j

yu||2L2(Px) = C||u||2Hm(Px).

On the other hand, we have

||u||2Km
m(Pr) ≥ C

∑
i+j≤m

||ρ−mρi+j∂i
x∂j

yu||2L2(Pr)

≥ C
∑

i+j≤m

||∂i
x∂j

yu||2L2(Pr) = C||u||2Hm(Pr),

based on i + j ≤ m and ρ = r1 or r2 on Pr.
For the region Ω\P , Lemma 2.7 shows that ||u||Hm(Ω\P ) ≤ M1||u||Km

m(Ω\P ),
which completes the proof for the first argument in the lemma.

The second inequality can be proved in a similar way by comparing different
norms on P and Ω\P , which will be shown in Lemma 2.10. �

From Lemma 2.5 and Lemma 2.8, we have the following corollary.

Corollary 2.9. We have Km
m+a ⊂ ρaHm ⊂ Km

a .

The proof is based on the isomorphism arising from the multiplication in Lemma
2.5 and the inequalities in Lemma 2.8.

The following lemma will compare Km
a and Hm near the y-axis and the vertices.

Lemma 2.10. Let ξ be a positive number and let G′ be an open subset of Ω,
such that ρ < ξ on G′. Then ||u||Hm(G′) ≤ C1ξ

a−m||u||Km
a (G′) if a ≥ m, and

||u||Km
a (G′) ≤ C2ξ

−a||u||Hm(G′) if a ≤ 0, where C1 and C2 are generic constants
depending on m.

Proof. For a ≥ m, we first have

||u||Hm(G′) ≤ C1||u||Km
m(G′)
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from Lemma 2.8. Then, on the subregion of G′ that is close to x = 0, Lemma 2.6
shows

||u||Km
m
≤ ξa−m||u||Km

a
.

For the subregion that is near one of the vertices, we have

||u||2Km
a

≥ C
∑

i+j≤m

||ρ−aρi+j∂i
x∂j

yu||2L2

≥ ξ2(m−a)||∂i
x∂j

yu||2L2 = ξ2(m−a)||u||2Hm .

The last inequality is based on ρ < ξ and i + j ≤ m on this subregion. Therefore,
||u||Hm(G′) ≤ C1ξ

a−m||u||Km
a (G′) for a ≥ m by combining the estimates on different

subregions of G′.
For a ≤ 0, similarly, on the subregion of G′, which is close to x = 0, because

ρ = x, a ≤ 0 and ρ < ξ, we have the following inequalities:

||u||2Km
a

=
∑

i+j≤m

||ρ−a(x∂x)i∂j
yu||2L2

≤ Cξ−2a
∑

i+j≤m

||∂i
x∂j

yu||2L2 = Cξ−2a||u||2Hm .

On the subregion close to one of the vertices, the inequalities are

||u||2Km
a

≤ C
∑

i+j≤m

||ρ−aρi+j∂i
x∂j

yu||2L2

≤ Cξ−2a
∑

i+j≤m

||∂i
x∂j

yu||2L2 = Cξ−2a||u||2Hm .

Therefore, for a ≤ 0, ||u||Km
a (G′) ≤ Cξ−a||u||Hm(G′). This also provides the proof of

the second inequality in Lemma 2.8. �

We have derived several lemmas to reveal the relations between weighted Sobolev
spaces Km

a and regular Sobolev spaces Hm. They are the preliminaries for our
main results in the next section. Now, we shall give an important lemma for the
homogeneity of the norms of weighted Sobolev spaces Km

a (Ωξ). This is one of the
main reasons that we use weighted Sobolev spaces for the analysis.

We define the dilation of a function on Ωξ := (0, ξ) × (0, l), 0 < ξ < 1, first. For
0 < λ < 1, let G ⊂ Ωξ be an open subset. Also, let v be a function on G. Then, we
define the dilation function vλ(x, y) := v(λx, y) for any point (x, y) ∈ G′ ⊂ Ωξ/λ,
such that (λx, y) ∈ G. The relation of the norms of v and its dilation vλ is given
by the following lemma.

Lemma 2.11. Let G ⊂ Ωξ\Ωλξ be an open subset and u(x, y) a function on G,
0 < λ < 1, ξ/λ < 1

2 . Then ||uλ||2Km
a (G′) = λ2a−1||u||2Km

a (G) for any u ∈ Km
a (G).

This relation also holds for G ⊂ Ωλξ, ξ < 1
2 .
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Proof. Note that from the dilation, G′ ⊂ Ω 1
2
, and hence ρ = x, r1 = r2 = 1 on

G′. The proof then follows by the change of variables and a direct calculation. Let
w = λx,

||uλ(x, y)||2Km
a (G′) =

∑
i+j≤m

∫
G′

(x−a(r1r2)i+j(x∂x)i∂j
yuλ)2dxdy

=
∑

i+j≤m

∫
G

(λaw−a(w∂w)i∂j
yu(w, y))2

1
λ

dwdy

=
∑

i+j≤m

∫
G

λ2a−1(w−a(w∂w)i∂j
yu(w, y))2dwdy

= λ2a−1
∑

i+j≤m

∫
G

(w−a(w∂w)i∂j
yu(w, y))2dwdy

= λ2a−1
∑

i+j≤m

||w−a(w∂w)i∂j
yu||2L2(G)

= λ2a−1||u||2Km
a (G).

We note that the proof above can be carried out without any restriction on G ⊂ Ωλξ,
ξ < 1

2 as well. Therefore, this relation for u and uλ also holds on this region. �

The significance of Lemma 2.11 is that it shows the possibility to estimate the
weighted norms on another region under dilation.

Let us explain why we considered Lemma 2.11 only on Ωξ. Recall Px and Pr

defined in Lemma 2.3. Let P = Px∪Pr. Then, the strong ellipticity of the operator
Lδ on Ω\P admits a unique solution u ∈ Hm+1(Ω\P )∩ {u|∂Ω = 0} for f ∈ Hm−1.
Therefore, u has no singularity on Ω\P , and no further study is needed in general
on this region. In fact, Lemma 2.11 is particular for the analysis of the solution
near x = 0, while one can refer to [3, 14, 31] for the solution around the vertices
(1, 0), (1, l).

We have listed several lemmas on Km
a for the degenerate problem and we shall

conclude this section with the following result.

Lemma 2.12. The operator Lδ defines a continuous map Lδ: Km+1
a+1 (Ω) →

Km−1
a−1 (Ω).

Proof. We need to show that for any u ∈ Km+1
a+1 (Ω), ||Lδu||Km−1

a−1
≤ C||u||Km+1

a+1
on

Pr, Px and Ω\P , which are defined in Lemma 2.3.
On Ω\P , Lδ = −∂2

x− δ2

x2 ∂2
y is strongly elliptic. Therefore, it is a bounded operator

Hm+1(Ω\P ) → Hm−1(Ω\P ) [26]. Then, the argument for this lemma follows the
equivalence of the spaces Hm+1(Ω\P ) and Km+1

a (Ω\P ).
On Pr, let g = r1r2, Hm = Hm(Pr) and Km

a = Km
a (Pr) in the proof for simplicity.

Then, based on g � ρ, the following inequalities hold with the coefficient frozen in
x at 1,
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||Lδu||Km−1
a−1

≤ C0

∑
i+j≤m−1

||ρ1−agi+j(x∂x)i∂j
y(−∂2

xu − δ2

x2
∂2

yu)||L2

= C0

∑
i+j≤m−1

||ρ1−agi+j∂i
x∂j

y(−∂2
xu − δ2∂2

yu)||L2

≤ C1

∑
i+j≤m−1

(||ρ1−agi+j∂i+2
x ∂j

yu||L2 + ||ρ1−agi+j∂i
x∂j+2

y u||L2)

≤ C2

∑
i+j≤m−1

(||ρ−a−1gi+j+2∂i+2
x ∂j

yu||L2 + ||ρ−a−1gi+j+2∂i
x∂j+2

y u||L2)

≤ C||u||Km+1
a+1

.

On Px, similarly, let Hm = Hm(Px) and Km
a = Km

a (Px) in the proof for simplic-
ity. Then, based on ρ = x, r1 = r2 = 1, we have the estimates below:

||Lδu||Km−1
a−1

≤ C1

∑
i+j≤m−1

||ρ1−a(x∂x)i∂j
y(−∂2

xu − δ2

x2
∂2

yu)||L2

≤ C1

∑
i+j≤m−1

(||x1−a(x∂x)i∂2
x∂j

yu||L2 + ||x1−a(x∂x)i∂j+2
y

δ2

x2
u||L2)

≤ C2

∑
i+j≤m−1

(||x1−a((x∂x)i+2 − (x∂x)i+1)x−2∂j
yu||L2

+ ||x−a−1(−2 + x∂x)i∂j+2
y u||L2)

≤ C2

∑
i+j≤m−1

(||x−a−1(−2 + x∂x)i+2∂j
yu||L2

+ ||x−a−1(−2 + x∂x)i+1)∂j
yu||L2 + ||x−a−1(−2 + x∂x)i∂j+2

y u||L2)

≤ C||u||Km+1
a+1

.

We here use x−a(x∂x)ixau = (a + x∂x)iu to simplify the expression. �

In the next section, we will show that this map Lδ : Km+1
a+1 ∩{u|∂Ω = 0} → Km−1

a−1

is a bijection, if the index a satisfies some conditions.

3. The well-posedness and regularity of the solution

First, we need the following estimates on the solution of equation (1). Recall
that we defined the set S = {(1, 0), (1, l), [0, y], 0 ≤ y ≤ l} in Section 2. It has
been shown in [2, 3, 14] that the trace or restriction of u ∈ Km

a on the boundary
follows

u|∂Ω\S ∈ Km− 1
2

a− 1
2

(∂Ω\S).

However, the estimate of the trace on x = 0 is needed to derive the corresponding
bilinear form a(·, ·) for the boundary value problem (1), although the trace on
this part of boundary is generally undefined in the weighted Sobolev spaces Km

a

[9, 14, 34]. We note that for m ≥ 1, Km
m ⊂ Hm by Lemma 2.8. Denote each
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segment of ∂Ω by D̄i, i = 1, 2, 3, 4, where Di is open. In particular, let D1 := (0, y),
0 ≤ y ≤ l, be the corresponding open set for the degenerate boundary x = 0. Then,
the trace

u|Di
∈ Hm− 1

2 (Di), ∀u ∈ Km
m(Ω),

is defined [31]. Consequently, for u ∈ K1
1, the trace of u is well defined in L2 on

every Di of the boundary ∂Ω. Furthermore, we can show that u|D1 = 0 for u ∈ K1
1.

Lemma 3.1. For any function u ∈ K1
1, its trace on Di is well defined in L2 and,

moreover, we have u|D1 = 0. consequently, the corresponding bilinear form for
equation (1) is a(u, v) =

∫
Ω
(∂xu∂xv + δ2

x2 ∂yu∂yv)dxdy, ∀v ∈ K1
1(Ω) ∩ {v|∂Ω = 0}.

Proof. For u ∈ K1
1, the trace u|Di

belongs to H
1
2 (Di) by the arguments above,

hence in L2(Di).
Moreover, on Ωξ = (0, ξ) × (0, l), ξ < 1/2, since ρ = x, we have

1
ξ2

∫
Ωξ

u2dxdy ≤
∫

Ωξ

1
x2

u2dxdy ≤ C||u||2K1
1(Ωξ) < ∞.

Therefore,
∫
Ωξ

u2dxdy → 0 as ξ → 0. Hence, the trace u|D1 = 0 in L2 by continuity.
Thus, the following bilinear form is obtained by integration by parts,

a(u, v) =
∫

Ω

(∂xu∂xv +
δ2

x2
∂yu∂yv)dxdy, ∀v ∈ K1

1(Ω) ∩ {v|∂Ω = 0}. �

Now, we shall prove the existence and uniqueness of the solution of equation (1)
in weighted Sobolev spaces.

Theorem 3.2. On Ω, the map Lδ : Km+1
1 (Ω) ∩ {u|∂Ω = 0} → Km−1

−1 (Ω) is an
isomorphism, for δ > 0, m ≥ 0. Namely, there is a unique solution u ∈ Km+1

1 (Ω)∩
{u|∂Ω = 0} for equation (1) if f ∈ Km−1

−1 (Ω).

Proof. We shall first prove it for m = 0. From Lemma 3.1, we have the following
weak formulation for equation (1),

a(u, v) =
∫

Ω

(∂xu∂xv +
δ2

x2
∂yu∂yv)dxdy =

∫
Ω

fvdxdy, ∀v ∈ K1
1(Ω) ∩ {v|∂Ω = 0}.

Then, we shall show the equivalence between the energy norm induced by a(·, ·)
and the K1

1-norm || · ||K1
1(Ω) to complete the proof.

Based on the definitions of a(·, ·) and the K1
1-norm on Ω, the continuity of a(·, ·)

can be verified as follows. From the Hölder inequality, there exists a constant C,
not depending on u or v, such that a(u, v) ≤ C||u||K1

1
||v||K1

1
. Therefore, a(·, ·) is a

continuous (bounded) bilinear form on K1
1.

To prove the coercivity, we adopt the following notation. Let Ωξ = (0, ξ)× (0, l)
be the rectangular domain near the boundary x = 0. Denote by B(v, r) the open
ball of radius r centered at v. For any of the vertices v1 = (1, 0), v2 = (1, l), let
Ωrξi

= Ω ∩ B(vi, ξ), i = 1, 2, be the corresponding conical domain, such that Ωrξi

can be characterized in polar coordinates by

Ωrξi
= {(r, θ)|0 < r < ξ, 0 < θ <

π

2
}.
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Note that a(u, u) is equivalent to |u|2K1
1

=
∑

i+j=1 ||ρ−1(r1r2)(x∂x)i∂j
yu||2L2 by their

definitions. Then, we shall first prove the following weaker inequalities for ξ small:∫
Ωξ

u2

x2
dxdy ≤ C

∫
Ωξ

(∂xu)2 +
δ2

x2
(∂yu)2dxdy,

∫
Ωrξi

u2

r2
dxdy ≤ C

∫
Ωrξi

(∂xu)2 + δ2(∂yu)2dxdy,

since ρ = x and ρ = r on Ωξ and Ωrξi
, respectively.

On the domain Ωξ, we first have the one-dimensional Poincaré inequality for y,∫ l

0

u2dy ≤ C1

∫ l

0

(∂yu)2dy.

By integrating with respect to x, we obtain∫
Ωξ

u2

x2
dydx ≤ C1

∫
Ωξ

(∂yu)2

x2
dydx ≤ C

∫
Ωξ

(∂xu)2 +
δ2

x2
(∂yu)2dydx,

where C is independent of u.
Similarly, we have the one-dimensional Poincaré inequality for θ on Ωrξi

,
∫ π

2

0

u2dθ ≤ C1

∫ π
2

0

(∂θu)2dθ.

By integrating in polar coordinates, we have∫
Ωrξi

u2

r2
dxdy =

∫
Ωrξi

u2

r
drdθ ≤ C1

∫
Ωrξi

(∂θu)2

r
drdθ.

Since
∫
Ωrξi

(∂xu)2 + (∂yu)2dxdy =
∫
Ωrξi

r(∂ru)2 + (∂θu)2

r drdθ, we now have
∫

Ωrξi

u2

r2
dxdy ≤ C

∫
Ωrξi

(∂xu)2 + δ2(∂yu)2dxdy,

with C independent of u.
Let Ωrξ

:= Ωrξ1
∪Ωrξ2

. Thus, based on the usual Poincaré inequality in Ω\(Ωξ ∪
Ωrξ

) and the inequalities above, we complete the proof for the coercivity a(u, u) ≥
C||u||2K1

1(Ω)
. Then, the existence of the unique solution u ∈ K1

1(Ω) ∩ {u|∂Ω = 0}
follows the Lax-Milgram Theorem [19]. �

For m ≥ 1, the proof follows [14, 33], which is based on the regularity of the
solution derived by the Mellin transform on an infinite domain.

As an extension from this theorem, one has the following corollary.

Corollary 3.3. There exists a constant η > 0, depending on Ω, such that

Lδ : Km+1
1+ε (Ω) ∩ {u|∂Ω = 0} → Km−1

−1+ε(Ω)

is an isomorphism for 0 < |ε| < η.

Proof. Denote by Lδε the operator defined by Lδ but on the space Km+1
1+ε ∩{u|∂Ω =

0}. Then, from Theorem 3.2 and Lemma 2.5 (see the diagram below), the operator
Lδε is an isomorphism if, and only if

Aδε := ρ−εLδερ
ε : Km+1

1 ∩ {u|∂Ω = 0} → Km−1
−1
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is an isomorphism.
Lδε

Km+1
1+ε −→ Km−1

−1+ε

ρε

�⏐⏐ ⏐⏐�ρ−ε

Km+1
1 −→ Km−1

−1

Then the proof follows the fact that Aδε is a continuous bijection as ε = 0 and the
operator Aδε depends continuously in norm on the parameter ε. �

Remark 3.4. For a brief summary, we have taken the advantage of weighed spaces
Km

a to prove the well-posedness of the solution u ∈ Km+1
1 ∩ {u|∂Ω = 0} of equation

(1), for all f ∈ Km−1
−1 . Furthermore, there exists some constant η, such that Lδ

is still invertible on weighted spaces that depend on η. In fact, one will find that
it is important to know the exact upper bound of ε in the FEM. To be more
precise, η is determined by the local behavior of the solution for equation (1) near
the set S = {(1, 0), (1, l), [0, y], 0 ≤ y ≤ l}. Recall Ωξ = (0, ξ) × (0, l) and
Ωrξ

= Ωrξ1
∪Ωrξ2

in Theorem 3.2. Then, it is possible to show that η1 =
√

l2+4δ2π2

2l

on Ωξ for ξ < 1/2. Namely, Aδε : Km+1
1 (Ωξ) ∩ {u|y=0,l = 0} → Km−1

−1 (Ωξ) is
invertible for |ε| < η1 =

√
l2+4δ2π2

2l . Here, we include some arguments on operator
Aδε and the constant η.

We focus on the region Ωξ = (0, ξ) × (0, l) for ξ < 1/2 first. The indicial family
of Aδε = ρ−εLδερ

ε for Km+1
1 (Ωξ) ∩ {u|y=0,l = 0} is

(iτ + ε +
1
2
)(iτ + ε − 1

2
) + δ2∂2

y

acting on H2([0, l])∩{u|y=0,l = 0}. The eigenvalues of ∂2
y on H2([0, l])∩{u|y=0,l =

0} are −(kπ
l )2 for k ∈ N := {1, 2, 3, . . .}. On Ωrξi

, the indicial family of Aδε for the
vertex can be derived in a similar way as in [15, 40] by the Mellin transform [33].
Then, we have the corresponding eigenvalues that can be calculated numerically.
Based on Kondratiev’s results [34], the operater Aδε : Km+1

1 ∩ {u|∂Ω = 0} → Km−1
−1

is Fredholm if, and only if its indicial family for the degenerate boundary x = 0 and
the indicial families for the two vertices are invertible for all τ ∈ R. This is seen to
be the case for (iτ + ε + 1

2 )(iτ + ε − 1
2 ) + δ2∂2

y , unless ε = ±
√

l2+4k2δ2π2

2l , k ∈ N.

Let η1 =
√

l2+4δ2π2

2l . Denote by η2 the smallest positive value, such that one
of the indicial families of Aδε for the vertices is not invertible as ε = η2. Then,
Aδε = ρ−εLδερ

ε : Km+1
1 ∩ {u|∂Ω = 0} → Km−1

−1 is Fredholm of index 0 when
|ε| < η = min(η1, η2), since Aδε is Fredholm of index 0 as ε = 0. Moreover, we
note that the kernels of the operators Aδε are decreasing as ε is increasing, we
conclude that they are invertible for 0 ≤ ε < η. By taking the adjoint, we obtain
the invertibility of Aδε for −η < ε ≤ 0 as well.

As the conclusion of the arguments above, we can take η = min(η1, η2), such
that for any |ε| < η, the operator Lδ : Km+1

1+ε ∩ {u|∂Ω = 0} → Km−1
−1+ε is still an

isomorphism.
For values of ε outside the range above, the operator Aδε will no longer be

invertible. In fact, it will have a non-zero index that can be computed using the
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results of [38]. To compute η2 for Ωrξ
, one can follow the method in [6, 15, 31], and

similar examples will be presented in a forthcoming paper.

4. The finite element method

In this section, we consider the numerical approximation for the solution u of
equation (1) by using the FEM. We shall provide a simple and explicit construction
of a sequence of finite dimensional subspaces Vn ⊂ H1

0 for equation (1), with possible
singular solutions, such that the finite element solution un ∈ Vn satisfies (Theorem
4.7)

||u − un||H1(Ω) ≤ Cdim(Vn)−m/2||f ||Hm−1(Ω), ∀f ∈ Hm−1(Ω),

which recovers the asymptotic rate of convergence for elliptic equations with high-
regulary solutions [19].

4.1. Estimate for the interpolation. Let us recall the following notation and
the well-known approximation result (2) in order to carry out further analysis.

Suppose the bilinear form a(·, ·) for an equation is both continuous and coercive
on H1 for a star-shaped two-dimensional domain D. Let V = V (T , m + 1) be the
finite element space associated to the degree m Lagrange triangle. Assume that
all triangles Tj of the triangulation T of domain D have angles ≥ α and edges of
length ≤ h and ≥ ah (quasi-uniform triangles). Let uV ∈ V be the finite element
solution determined by the weak form, and uI ∈ V the nodal interpolant of the
continuous solution u, namely, uI(xi) = u(xi) on any node.

Then, there exist positive constants c and C1 = C1(α, m) such that

c||u − uV ||H1(D) ≤ ||u − uI ||H1(D) ≤ C1h
m||u||Hm+1(D)(2)

for all u ∈ Hm+1(D), m ≥ 1. (See [19, 21].) The constant c depends only on the
bilinear form a(·, ·) by Céa’s Lemma, while C1 is independent of the solution. Note
uI is well defined for u ∈ Hm+1(D), m ≥ 1, by the Sobolev embedding theorem.

Let M := C1(α, m)M1M2, where M1 and M2 are from Lemma 2.7. Then, we
have the following estimate for the error ||u−uI ||K1

1
on a subset of Ω. Note that on

any compact subset D ⊂ Ω, uI is also well defined for any u ∈ Km+1
a , m ≥ 1, since

the Hm+1 space and the Km+1
a space are equivalent by Lemma 2.3 and Lemma 2.7.

Theorem 4.1. Fix α > 0 and 0 < ξ < 1/4. Let P ⊂ Ω be a polygonal domain,
such that ρ > ξ on P . Let T = {Tj} be a triangulation of P with angles ≥ α and
sides ≤ h. Then

||u − uI ||K1
1(P ) ≤ Mhm||u||Km+1

1+ε (P ),

for all u ∈ Km+1
1+ε (P ), where M depends on ξ and α.

Proof. The proof for the error estimate follows (2) and the equivalence of the Hm-
and the Km

a -norms on P immediately. �
We point out here that the estimate in Theorem 4.1 does not extend to the

entire domain Ω in general. It is reasonable to expect singularities for u as it is
approaching the degenerate boundary x = 0, since it only belongs to the weighted
Sobolev spaces instead of the usual Sobolev spaces . Also, it is possible that we have
corner singularities near the vertices away from x = 0, depending on the parameter
δ and on the interior angle of the corner. In either of the cases, the constant M
cannot be uniformly bounded, which will destroy the optimal rate of convergence
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[4, 5]. The FEM for elliptic equations with Dirichlet boundary condition near the
corners has been widely studied [6, 11, 15, 39] in different principles. The basic idea
is to reflect the singularities in finite elements by using anisotropic meshes near the
corners. In those graded meshes, the size and shape of the triangles are carefully
designed without increasing the number of degrees of freedom. Then, the optimal
rate of convergence can be recovered in terms of the dimension of the space Vn.
Therefore, from now on, we shall concentrate on the estimate near the degenerate
boundary x = 0, since we have been quite clear for the corners.

For a triangle T in the mesh, we let h′
x be the length of the perpendicular

projection of T on the x-axis, and h′
y the length of the perpendicular projection on

the y-axis. Recall Ωξ = (0, ξ) × (0, l). Then, the extension of Theorem 4.1 on the
thin rectangular region Ωξ\Ωκξ is as follows.

Theorem 4.2. Let Ωξ = (0, ξ) × (0, l) be a subset of Ω with ξ < 1/4. Given
0 < κ < 1, let T = {Tj} be a triangulation for the rectangular region U := Ωξ\Ωκξ.
Define hx := maxTj

{h′
x} and hy := maxTj

{h′
y} for all triangles in T . Recall

V = V (T , m + 1) and the nodal interpolant uI ∈ V of the solution. Then,

||u − uI ||K1
1(U) ≤ C(κ)ξε(hy +

hx

2ξ
)m||u||Km+1

1+ε (U),

for all u ∈ Km+1
1+ε , m ≥ 1, ε > 0.

Proof. We first note that by the definitions of hx and hy, in U , the mesh size (size of
triangles) ≤ hy + hx. Recall the dilation function uλ(x, y) = u(λx, y) from Section
2 and note that uIλ = uλI . Namely, dilation commutes with interpolation. Then,
if we let λ = 2ξ and U ′ = (κ

2 , 1/2) × (0, l), by Lemma 2.11 and Theorem 4.1, we
have

||u − uI ||K1
1(U) = λ− 1

2 ||uλ − uIλ||K1
1(U ′)

= λ− 1
2 ||uλ − uλI ||K1

1(U ′)

≤ λ− 1
2 M(hy +

hx

λ
)m||uλ||Km+1

1 (U ′)

= M(hy +
hx

λ
)m||u||Km+1

1 (U)

≤ Mξε(hy +
hx

2ξ
)m||u||Km+1

1+ε (U).

The last inequality is based on Lemma 2.6 in Section 2. �

This theorem provides us the interpolation error for u ∈ Km+1
1+ε on a rectangular

strip U near x = 0. Based on our observation above, it is possible to construct a
class C(l, h, κ, m, ε) of partitions T of Ω, such that the optimal convergence rate is
obtained.

Before we define the class C(l, h, κ, m, ε), we assume that, near the vertices (1, 0)
and (1, l), a proper graded mesh has already been chosen to recover the optimal
convergence rate, which is reasonable, based on our previous discussions. For this
reason, we will not consider the graded mesh near the vertices in the definition
below. In fact, we will use a uniform mesh near the corners to demonstrate our
method to generate triangles. However, it is only for the purpose of simplifying the
expressions. One needs to keep in mind that the uniform mesh near the corners in
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the following definition will be replaced by an appropriate graded mesh generally
in practical computation. See [6, 11, 15, 39] and references therein.

4.2. Construction of the mesh. We shall introduce the construction of a class
C(l, h, κ, m, ε) of triangulations and the finite element spaces Vn associated to it.
In the class C(l, h, κ, m, ε), we try to evenly distribute the interpolation error, and
keep the same number of triangles as in the usual mid-point triangulation.

In the notation C(l, h, κ, m, ε), we denote by h the size of triangles in the trian-
gulation on ( 1

2 , 3
4 ) × (0, l) ⊂ Ω; κ is the parameter to control the decay of triangles

near x = 0. We focus only on Ωξ = (0, ξ) × (0, l), for ξ < 1
2 . (Graded meshes

for both of the vertices (1, 0), (1, l) are needed in general, but it will have the same
number of triangles as in the uniform mesh.) Here we define the class C(l, h, κ, m, ε)
for our problem.

Definition 4.3. For a fixed m ∈ {1, 2, . . .}, ε ∈ (0, 1], l > 0, h > 0, we define
C(l, h, κ, m, ε) to be the following set of triangulations. First, for a positive integer
N (the number of refinements), choose κ, such that

κNε ≤ C(l)hm.

Then, starting with three initial triangles in Ω\Ω 1
2

(Figure 2), we decompose Ω 1
2

into rectangular subdomains Ω0 := Ω 1
2
\Ωκ

2
, Ω1 := Ωκ

2
\Ωκ2

2
, . . ., Ωj := Ωκj

2
\Ωκj+1

2
,

for j = 0, 1, 2, . . . , N − 1 and ΩN := ΩκN

2
= (0, κN

2 ) × (0, l). Note h = l in the
initial mesh. As in Theorem 4.2, we denote by hxj

and hyj
the maximum lengths

of perpendicular projections of triangles in Ωj on the x- and y-axis, respectively.
In the jth refinement, 1 ≤ j < N , we triangulate Ωj−1 with three triangles (Figure
2), such that they satisfy

hxj−1 = κj−1/2 − κj/2, and hyj−1 = l.

Meanwhile, new triangles are generated in Ω\Ωκj−1
2

, by connecting the mid-points

of the old triangles. Note that there is no triangle in Ωi, i≥j, yet. We simply repeat
this process for Ωj and Ω\Ωκj

2
in the next step. In the Nth refinement, besides

generating triangles for ΩN−1 and Ω\ΩκN−1
2

, we divide ΩN into two triangles by
the diagonal of the rectangle. Then, after N refinements, the triangulation T is the
union of the triangles in the triangulations of all the subdomains.

We now state the following property for the class C(l, h, κ, m, ε) we defined above.

Theorem 4.4. For each m ≥ 1, there exists a constant C, such that

||u − uI ||K1
1(Ω) ≤ Chm||u||Km+1

1+ε (Ω)

for any triangulation T in C(l, h, κ, m, ε) and u ∈ Km+1
1+ε (Ω) ∩ {u|∂Ω = 0}, ε > 0.

The proof of this theorem needs the estimate on every Ωj , j < N and ΩN ,
since it holds for Ω\Ω 1

2
by our assumption. Due to the construction of the class

C(l, h, κ, m, ε), we present the following lemma for the last region ΩN = (0, κN

2 ) ×
(0, l) first.

Lemma 4.5. On ΩN = (0, κN

2 )×(0, l), from the construction of C(l, h, κ, m, ε), the
estimate on the error gives

||u − uI ||K1
1(ΩN ) ≤ Chm||u||Km+1

1+ε (ΩN ),



730 H. LI

Figure 2. The initial mesh with three triangles (left); the trian-
gulation after one refinement.

for all u ∈ Km+1
1+ε (Ω) ∩ {u|∂Ω = 0}, ε > 0, m ≥ 1, where C depends on m and κ.

Proof. The proof follows the dilation of u and the introduction of an auxiliary
function v. We define the dilation uλ(x, y) = u(λx, y) for (λx, y) ∈ ΩN . Let λ = κN .
Then, uλ(x, y) ∈ K1+m

1+ε (Ω 1
2
) by Lemma 2.11. Meanwhile, let χ : Ω 1

2
→ [0, 1] be

a non-decreasing smooth function of x, which is equal to 0 in a neighborhood of
x = 0, but is equal to 1 at all the nodal points that do not lie on x = 0. Then we
introduce the auxiliary function v = χuλ on Ω 1

2
. Consequently, for a fixed m and

the corresponding nodal points in the triangulation, we have

||v||2Km+1
1 (Ω 1

2
)

= ||χuλ||2Km+1
1 (Ω 1

2
)

=
∑

i+j≤m+1

||
∑
k≤i

x−1(r1r2)i+j(x∂x)i−k∂j
yuλ(x∂x)kχ||2L2(Ω 1

2
)

≤ C||uλ||2Km+1
1 (Ω 1

2
)
,

where C depends on m and the function χ. Moreover, one notes that the nodal
interpolation vI = uλI on Ω 1

2
by the definition of v.

Therefore, the proof is completed by the following inequalities:

||u − uI ||K1
1(ΩN ) = λ−1/2||uλ − v + v − uλI ||K1

1(Ω 1
2
)

≤ λ−1/2(||uλ − v||K1
1(Ω 1

2
) + ||v − uλI ||K1

1(Ω 1
2
))

≤ λ−1/2(C1||uλ||K1
1(Ω 1

2
) + C2h

m
yN

||v||Km+1
1 (Ω 1

2
))

≤ λ−1/2(C1||uλ||K1
1(Ω 1

2
) + C3h

m
yN

||uλ||Km+1
1 (Ω 1

2
))

= C1||u||K1
1(ΩN ) + C3h

m
yN

||u||Km+1
1 (ΩN )

≤ C4(
κN

2
)ε||u||km

1+ε(Ω
N ) + C5h

m
yN

(
κN

2
)ε||u||Km+1

1+ε (ΩN )

≤ Chm||u||Km+1
1+ε (ΩN ).
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The first and the fifth are from Lemma 2.11; the third and the fourth are the results
of Theorem 4.1 and the relation between v and uλ; the sixth and the seventh are
based on the construction of the triangulation. �

Here we provide the proof for Theorem 4.4 by summing up the estimates on
every region Ωj for j ≤ N .

Proof. Since we assume the estimate is valid on Ω\Ω 1
2

that contains the vertices,
it is sufficient to show that the estimate still holds on Ω 1

2
for completing the proof.

The basic idea is to establish the estimate ||u − uI ||K1
1

on every Ωj for j =
0, 1, 2, . . . , N − 1 and on ΩN .

On every Ωj , based on the construction of the triangulation, ξ = κj

2 for Theorem
4.2. Then, we have

hxj

2ξ
� hyj

=
l

2N−(j+1)
.

Recall that h represents the size of triangles in the region (1
2 , 3

4 ) × (0, l). Then
h = O(l/2N) after N successive refinements. Since κNε ≤ Chm, by Theorem 4.2,
we have for every m,

||u − uI ||K1
1(Ω

j) ≤ C1κ
jε(

l

2N−(j+1)
)m||u||Km+1

1+ε (Ωj)

≤ Chm||u||Km+1
1+ε (Ωj).

As for the last region ΩN , we have ||u−uI ||K1
1(Ω

N ) ≤ Chm||u||Km+1
1+ε (ΩN ) by Lemma

4.5. The proof of Theorem 4.4 then follows by adding the squares of all these norms
on Ωj and ΩN . �

Recall η in Remark 3.4. From this point, we assume that 0 < ε < min(1, η) is
chosen such that

Lδ : Km+1
1+ε ∩ {u|∂Ω = 0} → Km−1

−1+ε

is an isomorphism, which is possible due to Corollary 3.3 and Remark 3.4. Denote
by V the finite element space associated to the degree m Lagrange triangle on
the triangulation in Definition 4.3. Let uV ∈ V be the finite element solution of
equation (1) determined by

a(uV , vV ) = (f, vV ), ∀vV ∈ V,

where a(·, ·) is defined in Lemma 3.1. Then, we have the following estimate on
||u − uV ||H1(Ω).

Theorem 4.6. Let u ∈ Km+1
1+ε ∩ {u|∂Ω = 0} be the solution for equation (1),

0 < ε < min(1, η). Then, for each m ≥ 1, there exists a constant C, such that

||u − uV ||H1
1 (Ω) ≤ Chm||f ||Hm−1(Ω)

for any T ∈ C(l, h, κ, m, ε) and ∀f ∈ Hm−1.
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Proof. We denote by γδ the norm of the inverse operator L−1
δ : Km−1

−1+ε → Km+1
1+ε ∩

{u|∂Ω = 0}. The theorem can be proved by the following inequalities:

||u − uV ||H1 ≤ M ||u − uV ||K1
1

≤ C1M ||u − uI ||K1
1

≤ C2Mhm||u||Km+1
1+ε

≤ C2Mγδh
m||f ||Km−1

−1+ε

≤ Chm||f ||Hm−1 .

The first and fifth inequalities are from Lemma 2.8; the second inequality is based on
Céa’s Lemma and the third inequality is from Theorem 4.4; the fourth inequality is
obtained by the invertibility of the operator Lδ : Km+1

1+ε ∩{u|∂Ω = 0} → Km−1
−1+ε. �

We have proved our theorems based on an explicit construction of the class
C(l, h, κ, m, ε) for Ω. Our estimates on the error were expressed by h, the size of
those triangles in ( 1

2 , 3
4 )× (0, l), as in the usual quasi-uniform finite element spaces.

However, since there is no uniform size for the triangles in the triangulation, it is
better to formulate the estimate in terms of the dimension of the finite dimensional
subspace V . Based on the structure of the mesh we developed above, we attain the
rate of convergence for the finite element solution uV ∈ V as follows.

Theorem 4.7. Let u ∈ Km+1
1+ε ∩ {u|∂Ω = 0} be the solution for equation (1),

0 < ε < min(1, η). There exists a constant C = C(l, κ, h, m, ε) for m ≥ 1, such that

||u − uV ||H1
1 (Ω) ≤ Cdim(V )−m/2||f ||Hm−1(Ω)

for any partition T ∈ C(l, h, κ, m, ε) and ∀f ∈ Hm−1(Ω).

Proof. Let Qj and Qj−1 be the numbers of the elements in the meshes after j
and j − 1 refinements from the initial mesh, respectively. Then, based on our
construction, we have Qj = 4×Qj−1 +3, hence, QN = O(4N ). On the other hand,
the size of the triangles in ( 1

2 , 3
4 ) × (0, l) satisfies h = O(2−N), after N levels of

refinement. Thus, dim(V ) ≈ QN ≈ h−2 for every m ≥ 1. From Theorem 4.6, we
have the following estimate in terms of the dimension of V :

||u − uV ||H1
1 (Ω) ≤ Cdim(V )−m/2||f ||Hm−1(Ω).

This is also the optimal convergence rate of the finite element solution expected for
a smooth solution. �

Based on the estimates for the interpolation error in weighted Sobolev spaces, we
have designed a class of triangulations, on which the optimal rate of convergence is
attained. In the next section, our theoretical results will be verified by comparing
the convergence rates numerically in triangulations with different parameters κ.

5. Numerical results

Here we present the numerical results to demonstrate our method to approximate
the solution. The following model problem in the case δ = 1 and the domain
Ω̂ = (0, 1) × (0, 10) for equation (1) is considered:{

−∂2
xu − 1

x2 ∂2
yu = 1 in Ω̂,

u = 0 on ∂Ω̂.
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Figure 3. The initial mesh with three triangles (left); the mesh
after one refinement κ = 0.2 (right).

We also have chosen m = 1, namely, piecewise linear functions for the FEM, because
the implementation is then simpler, while the results are still relevant. From the
previous theorems, the solution is not automatically in H2(Ω̂) near the degenerate
boundary. In fact, a more accurate a priori estimate in the usual Sobolev spaces
Hm(Ω̂) shows that u ∈ Hs(Ω̂) for s < 1 +

√
100+4π2

20 ≈ 1.59 [34]. Note that the
operator L1 is actually the Laplace operator −∆ near the vertices (0, 1), (0, l). The
solution near those two corners, therefore, behaves like

u(r, θ) = r2kζ(θ), k ∈ Z+,

in polar coordinates [31], where the function ζ is smooth, only depending on θ.
For this reason, the solution has no singularity near those two vertices in H2.
The vertices (1, 0), (1, l) do not affect the regularity of the solution in this case.
Consequently, it is not necessary to apply graded mesh there. Moreover, with a
direct calculation based on our arguments in Section 3, we have η1 =

√
100+4π2

20

and η2 = 2 on Ω̂. Then, one can set 0 < ε < η = min(η1, η2) =
√

100+4π2

20 ≈ 0.59
and take 0 < κ = 2−1/ε for the graded mesh near the degenerate boundary x = 0.
Therefore, we have the range κ < 2−1/0.59 ≈ 0.309, on which the optimal rate of
convergence in Theorem 4.7 holds for the model problem.

To construct the mesh on which we have the convergence rate as in Theorem
4.7, we start with three initial triangles (Figure 3). In every step of refinement,
we pick two points (x1, 0) and (x2, 10) as two vertices of the new triangle and the
third vertex of the new triangle is placed at the mid-piont of the base of the old
triangle. Denote by d the minimum distance from any point in the old triangles
to x = 0. Then, the parameter κ controls the position of the new points, such
that x1 = x2, κ = x1/d. Meanwhile, other new triangles are generated on the
region that is enclosed by old triangles, by the mid-points as described in the
previous section (Figure 3). Therefore, the new triangle that is approaching x = 0
is specially designed to fulfill the requirement in Definition 4.4, while all the other
new triangles are generated by connecting the mid-points of the old triangles. In
the last step, the last region Ω̂κN

2
is divided into two triangles by the diagonal of

the rectangle, as described in Section 4.
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Figure 4. The mesh after 5 levels of refinements for κ = 0.2.

One also notes that the triangles near the degenerate boundary are getting thin-
ner and thinner in our construction, in which the maximum-angle condition is
apparently violated. Nevertheless, the difficulty is already overcome by Theorem
4.2 and Theorem 4.4.

The finest mesh in our numerical experiments is obtained after 10 successive
refinements of the coarsest mesh and has roughly 222 ≈ 4 × 106 elements. The
preconditioned conjugate gradient (PCG) method is used to solve the resulting
system of algebraic equations.

We have tested several values of the parameter κ for the model problem. The
convergence rates are summarized in Table 1. These results convincingly show that
the theoretical approximation order can be verified in practical calculations with
κ < 0.3.

Table 1. Convergence history with e = log2(
|uj−uj−1|K1

1
|uj+1−uj |K1

1

).

j e : κ = 0.1 e : κ = 0.2 e : κ = 0.25 e : κ = 0.35 e : κ = 0.4 e : κ = 0.5
2 0.45 0.46 0.43 0.35 0.31 0.22
3 0.66 0.63 0.59 0.48 0.42 0.31
4 0.82 0.78 0.73 0.61 0.54 0.40
5 0.92 0.88 0.84 0.71 0.63 0.47
6 0.97 0.94 0.89 0.76 0.68 0.52
7 0.99 0.96 0.93 0.79 0.71 0.55
8 1.00 0.98 0.94 0.81 0.73 0.56
9 1.00 0.99 0.96 0.82 0.74 0.57

The left most column in Table 1 shows the number of the refinement level,
and uj denotes the numerical solution corresponding to the mesh after j levels of
refinement. The quantity printed out in other columns in the table represents the
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convergence rate in the following manner:

e = log2(
|uj − uj−1|K1

1

|uj+1 − uj |K1
1

).

The quantity e is not an exact convergence rate, but it turns out to be a quite
reasonable approximation to it. Recall h stands for the triangle size in ( 1

2 , 3
4 )×(0, l).

We have already seen that the correctly graded refinement improves the convergence
rate with a factor of about h0.43. In fact, the improvement may be better as our
theory shows that the convergence rate in the case κ < 0.3 is h1 by Theorem 4.4.

Our theoretical prediction for the convergence rate in the case κ = 0.5 is about
h0.59, and the theoretical prediction for the convergence rate in the cases κ = 0.1,
κ = 0.2 is h1, which is verified by Table 1. Moreover, one can see a big jump in
the rates between κ = 0.25 and κ = 0.35, which strongly supports our theory for
the critical number κ ≈ 0.3. Thus, our numerical results completely agree with the
theory we have presented in this paper. Based on the behavior of the sequence of
the numbers in every column, it is also reasonable to expect the optimal rate by
doing more refinements for all κ < 0.3. Therefore, we conclude from our numerical
results, that, for a correct refinement, the difference between consecutive numerical
solutions is decreasing like dim(Vn)−1/2, which verifies Theorem 4.7.

One may also notice that those numbers in each column keep increasing when
κ > 0.3. An explanation is that the solution consists of a singular and a regular
part: u = us +ur. The regular part ur dominates the behavior of the solution until
x is sufficiently close to the degenerate boundary, when the singular part can be
taken into account [6]. Therefore, as shown in the table, the increasing rate slows
down and will be fixed at some point.
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