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Generalized finite element methods (GFEMs), when applied to interface problems (IPs), need to 
be enriched with special functions to enhance approximation accuracy. These functions include 
distance functions, one-side distance functions, level set functions, and exponential forms of level 
set function. For the IP with geometrically complex interface curves, computation of the distance 
function or level set function could be challenging, and algorithms of computational geometry are 
usually involved. Moreover, theoretical analysis on optimal convergence of the GFEM enriched 
by these functions has not been fully investigated. In this study we propose a general enrichment 
scheme, based on which all the aforementioned enrichments can be viewed as special examples. 
We prove that a stable GFEM (SGFEM) with such a new enrichment scheme reaches the optimal 
convergence rate. Most importantly, the new scheme provides an instruction to construct machine 
learning (ML) based enrichments, which advances the ability of GFEM to handle geometrically 
complex interfaces. Two ML methods, deep neural network (DNN) and extreme learning machine 
(ELM), are studied. Among them, the ELM is highly suggested because it exhibits high accuracy for 
the interface curve with complex geometries. The learning dimension for the ML is one dimension 
less than that of the domain so that the proposed ML algorithm can be implemented efficiently. 
The numerical experiments demonstrate that the SGFEM with the ELM enrichment achieves the 
optimal convergence rates for the IP, as predicted theoretically.

1. Introduction

In interface modeling problems fundamental domains are divided into portions by various interface curves. Partial differential 
equations (PDEs) in these portions are equipped with different equation coefficients so that the solution of the PDE and its gradients 
may involve discontinuities across the interface. Such modeling problems exist in many engineering computations and physical phe-
nomena, such as bi-materials, fluid-structure, multi-physics, and contact problems [1,2]. It is well-known that conventional numerical 
methods, e.g., finite element methods (FEM), finite volume methods, have a difficulty in mesh generations for the interface problem; 
the mesh has to be fitted to the interface to achieve reasonable accuracy [3–5]. As a result, the mesh generation consumes major com-
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putational resources and may even cause failure of the numerical methods, especially in the interface problems with geometrically 
complex or evolving interface curves.

To reduce the burden of mesh generation, unfitted mesh has received extensive extension for the FEM to solve the interface problem 
in the last decades. A mesh is called unfitted if it is simple, fixed, and independent of interface positions [4,6,7]. The commonly-used 
unfitted FEMs include the immersed FEM [8–10], the cut FEM [11,12], the penalty FEMs [13,14,44,15], the generalized/extended 
FEM (GFEM/XFEM) [16–25], and many others [26–31]. The GFEM/XFEM augments the standard FEM with special functions that 
mimic local features of exact solutions to solve complicated non-smooth engineering problems [32–34]. These special functions 
are “pasted” by a partition of unity method [35,36]. For the interface problem, the merit of GFEM/XFEM consists in developing 
conforming methods free from penalty parameters or stabilization terms and constructing shape functions independent of the equation 
coefficients [6,19,23,20,37]. The stable GFEM (SGFEM) is a stable version of GFEM/XFEM. A GFEM/XFEM is stable if it maintains 
optimal convergence rates, and is well conditioned and robust in that the convergence and conditioning do not deteriorate when the 
interface approaches boundaries of meshes [38,39,19,40,24,41–43]. The applications of SGFEM to the IP are referred to [19,25,24, 
21,6].

The enriched local function is the major feature of the GFEM/XFEM and the SGFEM. For the interface problem the enrichments 
include distance function 𝑖 [23,33,19], one-side distance function 𝐼𝑖 [21,6,37] that is a cut distance function, absolute value of level 
set function [44,33], |𝜔|, and its modified version |𝐶𝜔| − 𝐶|𝐶𝜔| [20,45,33], where 𝐶 is the standard FE interpolation operator 
based on the unfitted mesh, exponential forms of 𝑖 or 𝜔 [46,47]. There are also other enrichments used in the GFEM/XFEM, for 
instance, the Heaviside function [48,33]. However, the Heaviside function is discontinuous, and proper penalty schemes are necessary 
for stabilization. We do not relate the Heaviside enrichment in this study because we study conforming methods that are free from 
the penalty or stabilization techniques. On the one hand, except the distance function and one-side distance functions [19,6,21,45], 
there are no theories indicating whether the other enrichments can make the GFEM/XFEM achieve optimal convergence rates for the 
interface problem. A unified theoretical analysis on these enrichments is still missing. In other words, is it possible to have a general 
theory for these enrichments such that the optimal convergence rate can be proven? On the other hand, the evaluation of distance 
or level set functions involves certain iteration algorithms in implementation. This can significantly increase the computational cost, 
especially for the interface problem with complex geometries. This study is mainly focused on addressing these two issues.

We first propose a general condition for the enrichment  in what follows:

 is smooth in each portion cut by the interface Γ, []Γ = 0, 
|||||
[ 𝐹 
𝐹𝐸𝑀Γ

]Γ
|||||

has positive low bound, (1.1)

where [𝑁]Γ represents the jump of 𝑁 across Γ, and 𝐸𝑀Γ is an unit vector normal to Γ. We then prove that if an enrichment  satisfies 
the condition (1.1), the SGFEM with  shall achieve the optimal convergence rate, 𝑅(𝐶), in the energy norm. The aforementioned 
enrichments are covered by the condition (1.1), and thus their optimal convergence rates are proven in this paper in a unified way. 
More importantly, the condition (1.1) motivates us to develop machine learning (ML) enrichments [49]. A loss function is established 
using the condition (1.1), and the ML enrichments are derived by minimizing the loss function through certain training process. 
Merits of the ML enrichments are the following: (a) the evaluation of function is direct and does not need the iteration algorithm 
as used in the evaluation of distance function and level set function, and (b) the complex interface geometries can be resolved 
efficiently by means of nonlinear approximation ability of the ML functions. The ML techniques [49] have achieved great success 
in image recognition, speech recognition, and natural language processing [49,50]. In recent years the ML has been extensively 
applied to numerical solutions to PDEs, including the physics-informed neural network and DGM [51,52], energy methods [53,54], 
weak adversarial neural network [55], Nitsche based method [56], radial basis neural network [57], and many others [58–62]. The 
applications of ML to the interface problem are referred to [63–66]. This study enriches the SGFEM with the ML technique that 
produces the ML enrichment based on the general condition (1.1). We study two typical ML methods, deep neural network (DNN) 
[49] and the extreme learning machine (ELM) [67]. The ELM has been applied to the numerical solution to PDE, see [68–71] for 
instance. The ELM achieves high approximation accuracy in comparison with the DNN for the PDE with smooth solutions. In this 
study we find that the ELM can realize the condition (1.1) with very high accuracy even for the geometrically complex interfaces. 
Numerical experiments show that the SGFEM with the ELM enrichment achieves the optimal convergence rate, 𝑅(𝐶), as predicted 
by the theory. The training dimension of the ML enrichment is one dimension less than the space dimension, and the enrichments 
are only used at nodes of elements cut by the interface. Therefore, the employment of ML enrichment does not increase the overall 
computational complexity of the SGFEM.

The paper is organized as follows. The model problem is described in Section 2. The conventional FEM, GFEM and SGFEM are 
reviewed in Section 3, where we propose a general enrichment condition. The optimal convergence rate of the SGFEM with the general 
enrichment is proven in Section 4. Based on the general enrichment condition, the ML enrichments are constructed in Section 5. Two 
ML techniques, DNN and ELM, are considered and compared in Section 5. The numerical experiments and concluding remarks are 
presented in Sections 6 and 7, respectively.

2. Model problem

For a domain Δ in ℝ2, an integer 𝜙, and 1 ≤ ⊕ ≤∞, we denote the usual Sobolev spaces by , 𝜙,⊕(Δ) with norm ‖ ⋅ ‖,𝜙,⊕ (Δ) and 
semi-norm | ⋅ |,𝜙,⊕ (Δ). The space , 𝜙,⊕(Δ) will be represented by ̊𝜙(Δ) for ⊕ = 2 and .⊕(Δ) when 𝜙 = 0, respectively.
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Fig. 1. The domains with a curved interface. 

We consider a bounded and simply connected domain Ω 𝜇ℝ2 with a piecewise smooth boundary 𝐹Ω. Let Γ be an interface that 
divides Ω into two sub-domains Ω0 and Ω1 such that Ω =Ω0 ∪Ω1, Ω0 (Ω1 = ), and Γ =Ω0 (Ω1. In this study, we consider the case 
that Γ is smooth and Γ ( 𝐹Ω = ), as shown in Fig. 1.

A point in the Cartesian coordinate system of ℝ2 is denoted as 𝜉 = (𝑆,𝐺). Let 𝜅 be a positive, piecewise-constant function given 
by

𝜅(𝜉 ) =
{

𝜅0, 𝜉 ∈Ω0,
𝜅1, 𝜉 ∈Ω1,

(2.1)

where 𝜅0 and 𝜅1 are positive constants, 0 < 𝑄0 ≤ 𝜅𝑙 ≤ 𝑄1 <∞, 𝑙 = 0,1, and 𝑄0, 𝑄1 ∈ℝ.
We are interested in the solution 𝑇 of the interface problem:

−+ ⋅ (𝜅+𝑇) = 𝑧 , in Ω, (2.2)
𝜅 𝐹𝑇 
𝐹𝐸𝑀𝜎

= 𝑗, on 𝐹Ω,

subject to jump conditions on the interface Γ

[𝑇]Γ = 0, on Γ, (2.3)
[
𝜅 𝐹𝑇 
𝐹𝐸𝑀Γ

]

Γ
= 0, on Γ, (2.4)

where 𝐸𝑀𝜎 and 𝐸𝑀Γ denote the unit outward normal to the boundary 𝐹Ω and to the interface Γ directed towards to Ω1, respectively. 
The notation [𝑁]Γ ∶= 𝑁0 − 𝑁1 defines the jump of a quantity 𝑁 along the interface Γ, where 𝑁𝑙 ∶= 𝑁|Ω𝑙

, 𝑙 = 0,1. The data 𝑧 ,𝑗 are given 
such that the solution 𝑇 ∈"2, where "2 is defined by

"2 ∶= {𝑇 ∶ 𝑇|Ω𝑙
∈̊2(Ω𝑙), 𝑙 = 0,1 and ‖𝐹𝑜𝑇‖.∞(Γ) <∞, |𝑜| ≤ 1} (2.5)

with a norm

‖𝑇‖"2 = ‖𝑇0‖̊2(Ω0) + ‖𝑇1‖̊2(Ω1) +
∑
|𝑜|≤1

‖𝐹𝑜𝑇‖.∞(Γ), ∀𝑇 ∈"2.

Remark 2.1. We formulate the model problem using the homogenous interface conditions, (2.3) and (2.4). In this case, the solution 
is continuous, and its gradients are discontinuous. Such a discontinuity is referred to as weak discontinuity [11,12,23,25,9,19]. The 
method in this study can be extended to the nonhomogeneous interface condition, [𝑇]Γ ≠ 0, 

[
𝜅 𝐹𝑇 
𝐹𝐸𝑀Γ

]
Γ
≠ 0 using a lifting technique like 

in [72,73]. The construction of shape functions is independent of the coefficient 𝜅 so that the method in this paper can be applied 
to anisotropic interface coefficients [22] and vector-valued interface problems in a unified way. We present the model problem (2.2) 
with a Neumann boundary so that the solution 𝑇 is unique up to a constant. Additional restrictive conditions are needed to attain 
a particular solution. For instance, when the solution value is given on a point in the domain, the solution is then unique. We use 
the Neumann boundary for simplicity of presentations. The proposed method can be used for the other boundary conditions directly, 
e.g., the Dirichlet or Robin conditions. □

We define (Ω) to be the energy space with respect to the homogeneous IP given by 

(Ω) ∶= {𝑇 ∈̊1(Ω) ∶ ‖𝑇‖2(Ω) ∶= ∫
Ω 

𝜅+𝑇 ⋅+𝑇 𝑋𝜉 <∞ and [𝑇]Γ = 0 on Γ}. (2.6)

The variational formulation associated with (2.2) based on a finite-dimensional subspace #𝐶 ∈ (Ω) is the following:

Find 𝑇𝐶 ∈ #𝐶 such that <(𝑇𝐶,𝑁𝐶) =.(𝑁𝐶), ∀𝑁𝐶 ∈ #𝐶, (2.7)
where the bilinear form <(⋅, ⋅) and .(⋅) are defined by
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Fig. 2. The interface, mesh, and enriched nodes. 

<(𝑁,𝜃) ∶= ∫
Ω 

𝜅+𝑁 ⋅+𝜃 𝑋𝜉 , .(𝑁) ∶= ∫
Ω 

𝑧𝑁 𝑋𝑆+ ∫
𝐹Ω 

𝑗𝑁 𝑋>, ∀ 𝑁,𝜃 ∈ (Ω). (2.8)

According to the standard Céa’s Lemma we have

‖𝑇− 𝑇𝐶‖(Ω) ≤ min 
𝑁𝐶∈(Ω)‖𝑇− 𝑁𝐶‖(Ω), ∀𝑁𝐶 ∈ #𝐶. (2.9)

We next describe GFEM and SGFEM subspaces #𝐶, based on which the optimal convergence rate in the energy norm, 𝑅(𝐶), can 
be obtained from (2.9).

3. GFEM, SGFEM, and proposed general enrichment condition

Let 𝐶 = {𝜗>} be a quasi-uniform finite element mesh with mesh size 0 < 𝐶 < 1; the finite elements 𝜗> can be triangles or quadri-
laterals. It is noted that the mesh 𝐶 is simple, fixed, and does not need to fit the interface Γ. The set FE nodes associated with the 
mesh 𝐶 is denoted by {𝜉𝜆}𝜆∈𝑘𝐶 , where 𝑘𝐶 is the index set. 𝜔𝜆, 𝜆 ∈ 𝑘𝐶 are the standard linear (bilinear for quadrilateral element) FE 
hat function 𝜔𝜆. The closure of support of 𝜔𝜆 is denoted by 𝑐𝜆. Since the mesh is quasi-uniform, we have

‖𝜔𝜆‖.∞(Ω) = ‖𝜔𝜆‖.∞(𝑐𝜆) ≤ 1, ‖+𝜔𝜆‖.∞(Ω) = ‖+𝜔𝜆‖.∞(𝑐𝜆) ≤ 𝐾𝐶−1, (3.1)
where the positive constant 𝐾 is independent of 𝐶 and 𝜆. It is well known that {𝜔𝜆}𝜆∈𝑘𝐶 form a partition of unity (PU) [35,36], i.e.,

∑
𝜆∈𝑘𝐶

𝜔𝜆 ≡ 1, in Ω.

The standard FEM subspace is given by

#𝐶 ∶= #𝜂𝛽𝛿 = span{𝜔𝜆(𝑆) ∶ 𝜆 ∈ 𝑘𝐶}. (3.2)
It is well-known that the FEM (3.2) cannot yields highly accurate approximations because the mesh does not fit Γ [4,19].

The generalized or extended FEM (GFEM/XFEM) [32–34] is a typical technique to approximate the non-smooth problems by 
augmenting the FEM space #𝜂𝛽𝛿 (3.2) by non-polynomial enrichment space #𝛽GH based on a partition of unity method (PUM) 
[35,36]. For the interface problem, the distance function to Γ (or the absolute of level set function I, |I|) [33,23,19,20] serves as 
the enriched function for the homogeneous IP, which is defined as follows:

𝑖(𝜉 ) = dist(𝜉 ,Γ), (3.3)
and the associated approximate subspace is

#𝐶 = #𝜂𝛽𝛿 ⊕ #𝛽GH and #𝛽GH = span{𝜔𝜆𝑖 ∶ 𝜆 ∈ 𝑘Γ𝐶,𝜗𝑀𝑙}, (3.4)
where

𝑘Γ𝐶,𝜗𝑀𝑙 = {𝜆 ∈ 𝑘𝐶 ∶ 𝜉𝜆 ∈ 𝜗> where �̊�> ( Γ ≠ )}

is a set of enriched nodes, see Fig. 2. The GFEM (3.4) causes sub-optimal convergence rates due to so-called blending element errors 
[33], and the optimal rate can be restored by enlarging the enrichment set 𝑘Γ𝐶,𝜗𝑀𝑙 or using corrected XFEM ideas [33].

There are various enrichments in the literature for the IP including a one-side distance function [21,6,37]

𝐼𝑖 =
{

𝑖, ∈Ω0,
0, ∈Ω1,

(3.5)

exponential form of I [46,47],
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Iexp =
{

1− 𝜗LI, ∈Ω0,
−I, ∈Ω1,

(3.6)

where I is a level set function [33,44] or a modified distance function, and a modified version of I [20,45,33],

|𝐶I|− 𝐶|𝐶I|, (3.7)
where 𝐶 is the standard FE interpolation operator based on (3.2).

The stable GFEM (SGFEM) is a stable version of GFEM/XFEM, which improves conditioning of GFEM/XFEM. The approximate 
subspace of the SGFEM for the homogeneous IP [19,21,6] is given by

#𝐶 = #𝜂𝛽𝛿 ⊕ #𝛽GH and #𝛽GH = span{𝜔𝜆(M − 𝐶M) ∶ 𝜆 ∈ 𝑘Γ𝐶,𝜗𝑀𝑙}, (3.8)
where M can be 𝑖 or 𝐼𝑖. The convergence of SGFEM (3.8) was proven in [21,6], and we present it here.

Theorem 3.1. Suppose that 𝑇∈"2 is the solution of the homogeneous IP ((2.2)-(2.4), and 𝑇NO,𝐶 is the SGFEM solution of (2.7) based on 
the finite-dimensional subspace #𝐶 (3.8), then there exists 𝐾 > 0 independent of 𝐶 such that

‖𝑇− 𝑇NO,𝐶‖(Ω) ≤ 𝐾𝐶‖𝑇‖"2 . (3.9)

It was also shown in [21,6] that the SGFEM (3.8) is stable and robust in the sense that a scaled condition number (SCN) of 
stiffness matrices is 𝑅(𝐶−2) that is of same order as the FEM, and the convergence and SCN do not deteriorate as interface approaches 
boundaries of elements.

Remark 3.1. Except the enrichments (3.3) and (3.5) in SGFEM [6,21,45], the optimal convergence rates of other enrichments have 
not been investigated theoretically. Below, we propose a general enrichment for the SGFEM of the interface problem and prove the 
optimal convergence rate of this general enrichment. Then the above-mentioned enrichments can be viewed as the special instances 
so that their theoretical optimal convergence rates are obtained in a unified way. □

A general enrichment condition By analyzing 𝑖 and |I| we find out that their key feature is that they are continuous across Γ and 
their derivatives normal to Γ have nonzero jumps across Γ, namely,

[𝑖]Γ = 0 and
[
𝐹𝑖 
𝐹𝐸𝑀Γ

]

Γ
≠ 0.

This feature also holds for the one-side distance function (3.5) and the exponential form of I, (3.6). Such an observation motivates 
us to propose a general enrichment  for the homogeneous IP as follows:

 ∈, 2,∞(Ω𝑙), 𝑙 = 0,1, []Γ = 0, 0 < P1 ≤ |||||
[ 𝐹 
𝐹𝐸𝑀Γ

]
Γ

|||||
≤ P2, (3.10)

where P2 > P1 > 0 are constants independent of 𝐶 and 𝜆. The approximation subspace of the SGFEM enriched by (3.10) is given by

#𝐶 = #𝜂𝛽𝛿 ⊕ #𝛽GH and #𝛽GH = span{I𝜆(− 𝐶) ∶ 𝜆 ∈ 𝑘Γ𝐶,𝜗𝑀𝑙}. (3.11)
We prove in next section that the SGFEM (3.11) with the general enrichment  can achieve the optimal convergence rate 𝑅(𝐶). 
As a consequence, the above-mentioned enrichments, 𝑖, |I|, (3.5), (3.6), satisfy the condition (3.10), and the SGFEM with these 
enrichments will also be proven to be optimally convergent. We mention that the enrichment (3.7) does not satisfy (3.10). However 
the optimal convergence of (3.7) can be also proven using the idea in this paper and the technique in [45].

Remark 3.2. Another important aspect of (3.10) is to instruct us to develop ML based enrichment for the IP. A loss function will be 
established based of (3.10) to train the DL functions to meet the condition (3.10). The ML enrichment possesses a great potential 
advantage for the IP with geometrically complex interface curves thanks to powerful nonlinear expression ability of the ML technique. 
We will execute this in the Section 5. □

4. Theoretical analysis on the optimal convergence rate

We then present an approximation result of , which is important to estimate the convergence errors in situations of curved 
interfaces. Denote 𝑙 = |Ω𝑙

, 𝑙 = 0,1.
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Lemma 4.1. For each 𝜆∈ 𝑘Γ𝐶,𝜗𝑀𝑙 and a point Q𝜆 ∈ 𝑐𝜆 ( Γ, let

𝐼𝜆(𝜉 ) = (Q𝜆) +
𝐹 
𝐹𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ +

⎧
⎪
⎨
⎪⎩

𝐹0
𝐹𝐸𝑀Γ

(Q𝜆)
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀Γ, 𝜉 ∈Ω0 (𝑐𝜆

𝐹1
𝐹𝐸𝑀Γ

(Q𝜆)
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀Γ, 𝜉 ∈Ω1 (𝑐𝜆,

(4.1)

then there is a constant 𝐾 independent of 𝜆 and 𝐶, such that

‖− 𝐼𝜆‖, R,∞(𝑐𝜆) ≤ 𝐾𝐶2−R, R = 0,1. (4.2)

Proof. Let S𝜆𝑙 be the linear Taylor polynomial of 𝑙 at Q𝜆 in Ω𝑙(𝑐𝜆, 𝑙 = 0,1, respectively, written in the local orthogonal coordinate 
(𝐸𝑀⟂Γ , 𝐸𝑀Γ), i.e.,

S𝜆𝑙(𝜉 ) = 𝑙(Q𝜆) +
𝐹𝑙
𝐹 𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ +

𝐹𝑙
𝐹 𝐸𝑀Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀Γ, 𝜉 ∈Ω𝑙 (𝑐𝜆, 𝑙 = 0,1. (4.3)

Using the Taylor theorem [74] and (3.10), we obtain

‖𝑙 − S𝜆𝑙‖, R,∞(Ω𝑙(𝑐𝜆)
≤ 𝐾𝐶2−R, R = 0,1, 𝑙 = 0,1.

Since []Γ = 0, we have

0(Q𝜆) = 1(Q𝜆) = (Q𝜆),
𝐹0
𝐹𝐸𝑀⟂Γ

(Q𝜆) =
𝐹1
𝐹𝐸𝑀⟂Γ

(Q𝜆) =
𝐹 
𝐹𝐸𝑀⟂Γ

(Q𝜆). (4.4)

According to (4.4), (4.1), and (4.3), we get 𝐼𝜆(𝜉 ) = S𝜆0 for 𝜉 ∈Ω0 (𝑐𝜆, 𝐼𝜆(𝜉 ) = S𝜆1 for 𝜉 ∈Ω1 (𝑐𝜆, and thus

‖− 𝐼𝜆‖, R,∞(𝑐𝜆) = max{‖− 𝐼𝜆‖, R,∞(Ω0(𝑐𝜆)
,‖− 𝐼𝜆‖, R,∞(Ω1(𝑐𝜆)}

= max{‖− S𝜆0‖, R,∞(Ω0(𝑐𝜆)
,‖− S𝜆1‖, R,∞(Ω1(𝑐𝜆)}

≤ 𝐾𝐶2−R, R = 0,1,

which is the desired result (4.2). □

We next present a technical result that will be used in proof of the main theorem. We continuously extend 𝑇0 and 𝑇1 to the whole 
domain Ω to get functions 𝐼𝑇0 and 𝐼𝑇1 in ̊2(Ω) such that

𝐼𝑇𝑙 = 𝑇𝑙 on Ω𝑙 and ‖ 𝐼𝑇𝑙‖̊2(Ω) ≤ 𝐾‖𝑇𝑙‖̊2(Ω𝑙), 𝑙 = 0,1, (4.5)
where 𝐾 is a positive constant independent of 𝐶 (see Theorem 1.4.5 in [74]).

Lemma 4.2. For each 𝜆∈ 𝑘Γ𝐶,𝜗𝑀𝑙, there is a linear polynomial T𝜆 and a constant U𝜆 such that

|𝑇− T𝜆 − U𝜆 𝐼𝜆|2̊R(𝑐𝜆)
|𝐶(𝑇− T𝜆 − U𝜆 𝐼𝜆)|2̊R(𝑐𝜆)

}
≤ 𝐾𝐶4−2R(‖ 𝐼𝑇0‖2̊2(𝑐𝜆)

+ ‖ 𝐼𝑇1‖2̊2(𝑐𝜆)
) +𝐾𝐶6−2R‖+𝑇‖2.∞(Γ), R = 0, 1, (4.6)

where 𝑐𝜆 is the patch associated with the node 𝜉𝜆.

Proof. For each 𝜆 ∈ 𝑘Γ𝐶,𝜗𝑀𝑙, we consider a point Q𝜆 ∈ 𝑐𝜆 ( Γ. Let S𝜆 𝐼𝑇𝑙 be the linear Taylor polynomial of 𝐼𝑇𝑙 at Q𝜆 written in the local 
orthogonal coordinate (𝐸𝑀⟂Γ , 𝐸𝑀Γ), namely,

S𝜆 𝐼𝑇𝑙(𝜉 ) = 𝐼𝑇𝑙(Q𝜆) +
𝐹 𝐼𝑇𝑙
𝐹𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ +

𝐹 𝐼𝑇𝑙
𝐹𝐸𝑀Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀Γ, 𝜉 ∈ 𝑐𝜆, 𝑙 = 0,1.

Since 𝑇 is continuous on Γ, we have 𝐼𝑇0(Q𝜆) = 𝐼𝑇1(Q𝜆) = 𝑇(Q𝜆) and 𝐹 𝐼𝑇0
𝐹𝐸𝑀⟂Γ

(Q𝜆) =
𝐹 𝐼𝑇1
𝐹𝐸𝑀⟂Γ

(Q𝜆) =
𝐹𝑇 
𝐹𝐸𝑀⟂Γ

(Q𝜆). Therefore,

S𝜆 𝐼𝑇𝑙(𝜉 ) = 𝑇(Q𝜆) +
𝐹𝑇 
𝐹𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ +

𝐹 𝐼𝑇𝑙
𝐹𝐸𝑀Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀Γ, 𝜉 ∈ 𝑐𝜆, 𝑙 = 0,1. (4.7)

Let

U𝜆 =
𝐹 𝐼𝑇1
𝐹𝐸𝑀Γ

(Q𝜆)−
𝐹 𝐼𝑇0
𝐹𝐸𝑀Γ

(Q𝜆) 
𝐹1
𝐹𝐸𝑀Γ

(Q𝜆)−
𝐹0
𝐹𝐸𝑀Γ

(Q𝜆)
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and

T𝜆(𝜉 ) = 𝑇(Q𝜆) +
𝐹𝑇 
𝐹𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ +

(
𝐹 𝐼𝑇1
𝐹𝐸𝑀Γ

(Q𝜆)− U𝜆
𝐹1
𝐹𝐸𝑀Γ

(Q𝜆)
) (

𝜉 −Q𝜆
)
⋅ 𝐸𝑀Γ

−U𝜆

(
(Q𝜆) +

𝐹 
𝐹𝐸𝑀⟂Γ

(Q𝜆) 
(
𝜉 −Q𝜆

)
⋅ 𝐸𝑀⟂Γ

)
, 𝜉 ∈ 𝑐𝜆.

Employing (4.1) and (4.7) we have

(𝑇− T𝜆 − U𝜆)(𝜉 ) = U𝜆
( 𝐼𝜆 − )(𝜉 ) + (

𝑇− T𝜆 − U𝜆 𝐼𝜆)(𝜉 )
= U𝜆

( 𝐼𝜆 − )(𝜉 ) +
{

( 𝐼𝑇0 − S𝜆 𝐼𝑇0)(𝜉 ), 𝜉 ∈Ω0 ∪𝑐𝜆,
( 𝐼𝑇1 − S𝜆 𝐼𝑇1)(𝜉 ), 𝜉 ∈Ω1 ∪𝑐𝜆.

(4.8)

Therefore,

|𝑇− T𝜆 − U𝜆|2̊R(𝑐𝜆)
≤ 2|𝑇− T𝜆 − U𝜆 𝐼𝜆|2̊R(𝑐𝜆)

+ 2U2𝜆 |− 𝐼𝜆|2̊R(𝑐𝜆)

= 2| 𝐼𝑇0 − T𝜆 − U𝜆 𝐼𝜆|2̊R(Ω0(𝑐𝜆)
+ 2| 𝐼𝑇1 − T𝜆 − U𝜆 𝐼𝜆|2̊R(Ω1(𝑐𝜆)

+ 2U2𝜆 |− 𝐼𝜆|2̊R(𝑐𝜆)

= 2| 𝐼𝑇0 − S𝜆 𝐼𝑇0|2̊R(Ω0(𝑐𝜆)
+ 2| 𝐼𝑇1 − S𝜆 𝐼𝑇1|2̊R(Ω1(𝑐𝜆)

+ 2U2𝜆 |− 𝐼𝜆|2̊R(𝑐𝜆)≤ 2| 𝐼𝑇0 − S𝜆 𝐼𝑇0|2̊R(𝑐𝜆)
+ 2| 𝐼𝑇1 − S𝜆 𝐼𝑇1|2̊R(𝑐𝜆)

+ 2U2𝜆 |− 𝐼𝜆|2, R,∞(𝑐𝜆)
|𝑐𝜆|

≤ 2𝐾𝐶4−2R
(
‖ 𝐼𝑇0‖2̊2(𝑐𝜆)

+ ‖ 𝐼𝑇1‖2̊2(𝑐𝜆)

)
+ 2𝐾U2𝜆 𝐶

6−2R, R = 0,1, (4.9)
where the last inequality uses the result (4.1). According to the condition (3.10), we have

|U𝜆| ≤ 1 
P1

2‖+𝑇‖.∞(Γ) (4.10)

Using (4.10) and (4.9), we get the first inequality of (4.6).
We next estimate the second term of (4.6). For 𝜆∈ 𝑘Γ𝐶,𝜗𝑀𝑙, we define 𝑐0

𝜆 = 𝑐𝜆 (Ω0 and 𝑐1
𝜆 = 𝑐𝜆 ⧵𝑐0

𝜆 . Using (4.8), we have

𝐶(𝑇− T𝜆 − U𝜆)|||𝑐𝜆
=

∑
𝜉V∈𝑐𝜆

(𝑇− T𝜆 − U𝜆)(𝜉V )IV =
∑

𝜉V∈𝑐𝜆

U𝜆( 𝐼𝜆(𝜉V )− (𝜉V ))IV (4.11)

+
∑

𝜉V∈𝑐1
𝜆

( 𝐼𝑇1 − S𝜆 𝐼𝑇1)(𝜉V )IV +
∑

𝜉V∈𝑐0
𝜆

( 𝐼𝑇0 − S𝜆 𝐼𝑇0)(𝜉V )IV +
∑

𝜉V∈𝑐𝜆

U𝜆
( 𝐼𝜆 − )(𝜉V )IV .

According to the Taylor Theorem [74] and the extension result (4.5), we have

|( 𝐼𝑇𝑙 − S𝜆 𝐼𝑇𝑙)(𝜉V )| ≤ ‖ 𝐼𝑇𝑙 − S𝜆 𝐼𝑇𝑙‖.∞(𝑐𝜆) ≤ 𝐾𝐶| 𝐼𝑇𝑙|̊2(𝑐𝜆), for 𝜉V ∈ 𝑐𝜆, 𝑙 = 0,1.

Therefore using (4.11), (3.1), (4.2), and the inequalities above, we get

|𝐶(𝑇− T𝜆 − U𝜆)|2̊R(𝑐𝜆)

≤ 𝐾
[
U2𝜆 max 

𝜉V∈𝑐𝜆

{ 𝐼𝜆(𝜉V )− (𝜉V )|2
}
+ max 

𝜉V∈𝑐𝑙
𝜆 ,

𝑙=0,1

{|( 𝐼𝑇𝑙 − S𝜆 𝐼𝑇𝑙)(𝜉V )|2
}]

×
( ∑
𝜉V∈𝑐𝜆

|IV |2̊R(𝑐𝜆)
)

≤ 𝐾𝐶4−2R
(
| 𝐼𝑇0|2̊2(𝑐𝜆)

+ | 𝐼𝑇1|2̊2(𝑐𝜆)

)
+𝐾U2𝜆 𝐶

6−2R, R = 0,1, (4.12)

where in the last inequality we use |IV |2̊R(𝑐𝜆)
≤ 𝐾𝐶2−2R , R = 0,1 according to (3.1). The second of (4.6) holds using the estimate of U𝜆, 

(4.10). □

Theorem 4.3. Suppose that 𝑇∈"2 is the solution of the homogeneous IP ((2.2)-(2.4)), and 𝐼𝑇NO,𝐶 is the SGFEM solution of (2.7) based on 
the finite-dimensional subspace #𝐶 (3.11) in which the distance function 𝑖 is replaced by the general enrichment  (3.10), then there exists 
𝐾 > 0 independent of 𝐶 such that

‖𝑇− 𝐼𝑇NO,𝐶‖(Ω) ≤ 𝐾𝐶‖𝑇‖"2 . (4.13)

Proof. Denote

𝑁 ∶= 𝐶𝑇+ ∑

𝜆∈𝑘Γ𝐶,𝜗𝑀𝑙

U𝜆I𝜆
(− 𝐶()) ,
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where U𝜆 are the constants in Lemma 4.2. We see that 𝑁 belongs to the space (3.11). Since {I𝜆}𝜆∈𝑘𝐶 forms a PU and T−𝐶T = 0 on 𝑐𝜆
for any linear polynomial T, we have

𝑇− 𝑁 =
∑
𝜆∈𝑘𝐶

I𝜆(𝑇− 𝐶𝑇)− ∑

𝜆∈𝑘Γ𝐶,𝜗𝑀𝑙

U𝜆I𝜆
(− 𝐶())

=
∑

𝜆∈𝑘𝐶,G𝛽

I𝜆(𝑇− 𝐶𝑇) + ∑

𝜆∈𝑘Γ𝐶,𝜗𝑀𝑙

I𝜆
[ − 𝐶] (𝑇− T𝜆 − U𝜆) ∶= S1 + S2, (4.14)

where 𝑘𝐶,G𝛽 ∶= 𝑘𝐶 ⧵ 𝑘Γ𝐶,𝜗𝑀𝑙,  is the identity operator, T𝜆 is the linear polynomial in Lemma 4.2, and S1,S2 denote the two summation 
terms in the second equality above, respectively. Using (4.14), (4.6), and the similar argument to derive the estimates on S1 and S2
in Theorem 4.4 [21], we have

‖𝑇− 𝑁‖2(Ω) ≤ 𝐾𝐶2‖𝑇‖2"2
. (4.15)

Now using the Céa’s Lemma (2.9) we have

‖𝑇− 𝑇NO‖(Ω) ≤ min 
𝑁∈(Ω)‖𝑇− 𝑁‖(Ω) ≤ 𝐾𝐶‖𝑇‖"2 ,

which is the desired result. □

5. The ML enrichments of SGFEM for IP

The general enrichment (3.10) provides a practical instruction to construct the ML enrichment for the IP. The merit of ML en-
richments consists in avoiding the computation of distance or level set functions, which requires certain algorithms of computational 
geometry. This is notable when the interface curve is geometrically complex; the ML techniques are powerful to deal with the complex 
geometry. Motivated from (3.10), we propose an easily-implemented form of (3.10) by the ML as follows: first construct a function 0 satisfying

0 ∈ 𝐾2(Ω), 0|Γ = 0, and |||
𝐹0
𝐹𝐸𝑀Γ

|||
|||Γ ≥ P1, (5.1)

and then the absolute of 0,

𝜅𝜎> = |0| (5.2)
or a one-side version

W> =
{ W, in Ω0,

0, in Ω1,
(5.3)

satisfy (3.11). This is because
|||[
𝐹𝜅𝜎>
𝐹 𝐸𝑀Γ

]Γ
||| = 2|||

𝐹0
𝐹𝐸𝑀Γ

|||
|||Γ ≥ 2P1, 

|||[
𝐹W>
𝐹 𝐸𝑀Γ

]Γ
||| =

|||
𝐹0
𝐹𝐸𝑀Γ

|||
|||Γ ≥ P1.

We then approximate (5.1) using the ML technique in what follows: first construct a ML function 𝜙R satisfying

𝜙R ∈ 𝐾2(Ω), 𝜙R|Γ ≈ 0, and |||
𝐹𝜙R
𝐹𝐸𝑀Γ

|||
|||Γ ≥ P1, (5.4)

and the associated 𝜅𝜎>𝜙R and W>𝜙R defined like in (5.2) and (5.3) serve as the enrichments.
We establish the loss function of ML based on (5.4). To this end, we take GΓ sampling points Q𝜆 uniformly distributed on Γ, see 

Fig. 3, and denote X = [Q𝜆]
GΓ
𝜆=1 to be the input set for training of the ML. Let #ML be a function space generated by the ML with 

parameters Y (e.g., weights and bias of neural networks). The loss function we use to yield 𝜙R in (5.1) is the following:

Loss(X;Y) = 1 
GΓ

GΓ∑
𝜆=1 

([
ZY(Q𝜆)− 0

]2
+ [

[ 𝐹ZY
𝐹𝐸𝑀𝜆

(Q𝜆)− P1
]2)

, ∀ ZY ∈ #ML, (5.5)

where [ > 0 is a tradeoff parameter. Note that the direction 𝐸𝑀𝜆(Q𝜆) in (5.5) is an approximation of 𝐸𝑀Γ(Q𝜆) in (5.4). Let 𝜉𝜆 be the nearest 
point to Q𝜆 in X, the unit vector 𝐸𝑀𝜆(Q𝜆) is defined to be orthogonal to Q𝜆𝜉𝜆 and towards Ω1 as 𝐸𝑀Γ is towards, see Fig. 3. This reduces 
the computational complexity in the normal vector 𝐸𝑀Γ(Q𝜆).

Minimizing the losses (5.5), we get the ML functions as follows:

𝜙R = argmin
ZY∈#ML

Loss(X;Y), (5.6)
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Fig. 3. The representation of Q𝜆 , 𝜉𝜆 , 𝐸𝑀Γ(Q𝜆), and 𝐸𝑀𝜆(Q𝜆). 

and then the associated 𝜅𝜎>𝜙R and W>𝜙R defined like in (5.2) and (5.3) serve as the enrichments. The associated SGFEM subspace for the 
homogeneous IP is defined as

#𝐶 = #𝜂𝛽𝛿 ⊕ #𝛽GH and #𝛽GH = span{I𝜆( 𝐼− 𝐶 𝐼) ∶ 𝜆 ∈ 𝑘Γ𝐶,𝜗𝑀𝑙}, (5.7)
where 𝐼 is taken as 𝜅𝜎>𝜙R or W>𝜙R . According to (4.13), the optimal convergence rate can be achieved if the ML functions 𝜙R learn (5.4) 
accurately enough. This is verified in the numerical experiments below.

Remark 5.1. In the loss function (5.5) the ML function is only required to learn zero on Γ accurately, while 𝐹ZY𝐹𝐸𝑀𝜆
(Q𝜆) is not necessary to 

approximate P1 very accurately because |||
𝐹𝜙R
𝐹𝐸𝑀Γ

|||
|||Γ only needs a positive low bound, see (5.4). This provides us with a great flexibility 

to adjust the parameter [ in (5.5) to make (5.4) hold. We see in (5.5) that the dimension of learning is one dimension less than 
the problem dimension, two in ℝ2. Moreover, the assembling of stiffness matrices and the construction of ML enrichments can be 
implemented separately or in parallel. Therefore, yielding such a ML enrichment does not increase essential computational complexity 
in comparison with the SGFEM computation. □

Remark 5.2. It is noted that there are other constructions of distance-like functions in the literature, such as the ML approach [75,76], 
generalized barycentric coordinates [77]. These distance-like functions are used globally in the domain, whose construction is also 
global. For instance, in [75,76] the values of distance function in the domain are used for the construction. This causes to compute 
more values of the distance function, which increases the computational complexity. By contrast, the ML function in this study only 
needs to satisfy the condition (5.4) on the interface Γ, and thus the computational dimension is one dimension less than that of 
domain computation, and there are no computations of distance function. Most importantly, according to the approximation theory 
(4.13), a positive low bound of |||

𝐹𝜙R
𝐹𝐸𝑀Γ

|||
|||Γ in (5.4) is needed to achieve the optimal convergence rate. This is not incorporated into the 

constructions in the literature. In our computation we find out that if | 𝐹𝜙R𝐹𝐸𝑀Γ
| is close to zero on some locations on Γ (the positive low 

bound is lost), the optimal convergence rate of SGFEM will be damaged. □

The description of deep neural network and extreme learning machine In this paper we consider two ML methods in (5.5) and (5.7), 
deep residual neural network (DSNN) and extreme learning machine (ELM), and in the associated enrichments, 𝜅𝜎>𝜙R and W>𝜙R , “ml” 
will be taken as “dsnn” and “elm”, respectively. We describe them below.

Let !\ ∈ ℝ𝑋\ be vector of dimension 𝑋\, and !1 = (𝑆,𝐺)S . Let "\ ∈ ℝ𝑋\+1×𝑋\ be 𝑋\+1 × 𝑋\ matrix and #\ ∈ ℝ𝑋\+1 be vector of 
dimension 𝑋\+1. Denote the activation function by U, and U(!\) is defined by (U(!\1 ),⋯ ,U(!\𝑋\ ))

S . A fully connected neural network 
function of .-layer is defined by

GY ∶=".G.−1 ◦⋯ ◦G2 ◦G1(!1) + #., G\(!\) ∶= U("\!\ + #\), \ = 1,2,⋯ ,.− 1, 𝑋.+1 = 1,

where Y = {"\,#\}.\=1 is referred to as the parameter set, and 𝑋.+1 = 1 is because we consider a scalar problem. A fully connected 
neural network is exhibited in Fig. 4 Left. In this paper we use the ResNet [50], an improved version of fully connected network, which 
is generally used in the ML for PDE, see [53,60] for instance. The ResNet is obtained by stacking the residual blocks continuously. 
Each residual block consists of several fully connected layers, and its output is obtained by adding the output of the last layer and the 
input of the residual block. The merit of ResNet is the significant improvement of training speed and approximation error. A ResNet 
with four residual blocks is shown in Fig. 4 Middle. The parameters Y are derived by solving the minimization problem (5.6), which 
are updated using a stochastic gradient descent (SGD) method [78,49].

The second ML method is the extreme learning machine (ELM) [67]. The ELM is a shallow neural network with randomly selected 
wrights and bias. Let (𝑆] ,𝐺]) be a relative center of Ω, and 𝑙] be half the diameter of Ω. The functions of ELM are the following:

HY =
∑̂
V=1 

𝜃VU
(
𝜙1
V
𝑆− 𝑆]
𝑙]

+𝜙2
V
𝐺− 𝐺]
𝑙]

+ 𝜎V
)
,

where 𝜙1
V ,𝜙

2
V ,𝜎V , V = 1,2,⋯ ,^ are random numbers uniformly distributed on [−1,1], and Y = {𝜃V}^V=1 is the parameter set of ELM. 

We note that the numbers 𝜙1
V ,𝜙

2
V ,𝜎V are generated in advance and fixed, which are not the trained parameters like in the DSNN. See 
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Fig. 4. Left: a fully connected neural network; Middle: a residual network incorporating four residual blocks, each of which contains two full connection layers and 
one residual item, and each layer contains 20 neurons; Right: an ELM.

Table 1
The approximation level of various ML enrichments 𝜙R
to the condition (5.4).

𝜙R ‖𝜙R − 0‖.∞ (Γ) [min,max] of |||
[ 𝐹𝜙R

𝐹 𝐸𝑀Γ

]
Γ
|||

𝑋>𝑀𝑀 6.425E-03 [0.989,1.009] 𝜗R𝜙 4.809E-13 [0.438,1.548] 

Fig. 5. Left: a pentagon interface. The plots in Ω0 of ML methods: Middle: DSNN enrichment; Right: ELM enrichment. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 4 Right for an illustration of ELM. The optimization process of ELM is executed by solving a least square problem. The ELM has 
been applied to solve PEDs, see [68–71] for instance. We use the ELM in this paper to construct the enrichment (5.4).

In this paper we use the tanh activation function [49], and thus both the DSNN functions and ELM functions are 𝐾∞ continuous. 
The DSNN and ELM based on the loss function (5.5) to produce the ML functions in (5.4) are denoted by 𝑋>𝑀𝑀 , 𝜗R𝜙, respectively. 
In our computation we find out that the DSNN cannot produce the ML function with sufficient accuracy in (5.4). Therefore, the 
associated SGFEM generates the suboptimal convergence rate. On the contrary, the ELM meets (5.4) very accurately even for the 
interface is geometrically complex. Therefore, the ELM is suggested to yield the ML enrichment of the SGFEM for IP.

In the end of this section we carry out a numerical example to intuitively illustrate how effectively the proposed ML algorithm 
produces the ML enrichments in (5.4). We consider a pentagon interface with a parametric equation 𝑙 = 102+107 sin(5Y), where (𝑙,Y)
is the polar coordinate, see Fig. 5 Left. We uniformly sample GΓ points Q𝜆 on Γ as training points. In the DSNN, we set GΓ = 200. The 
parameters of DSNN are the following: 4 residual blocks are used, each of which contains two full connection layers and one residual 
item, and each layer contains 20 neurons, iteration number is 10000, [ = 0.1, P1 = 1 in (5.5), the optimizer is “Adam”, the learning 
rate _ = 0.001. In the ELM, we set GΓ = 340, and ^ = 300 neurons are used, the parameters 𝜙1

V ,𝜙
2
V ,𝜎V , V = 1,2,⋯ ,^ are randomly 

sampled based on the uniform distribution on [−1,1], [ = 1× 10−12, P1 = 1 in (5.5), 𝑆] = 0,𝐺] = 0, 𝑙] = 107. The enrichments yielded 
by these ML methods based on the loss (5.5) are denoted by 𝑋>𝑀𝑀 and 𝜗R𝜙, respectively. The plots of 𝑋>𝑀𝑀 and 𝜗R𝜙 in Ω0 are shown 
in Fig. 5. To illustrate how these functions meet the condition (5.4) we compute the following indictors:

‖𝜙R − 0‖.∞(Γ), [min, max] of |||[
𝐹𝜙R
𝐹𝐸𝑀Γ

]Γ
|||,

where [min, max] are the smallest and largest values of |||[
𝐹𝜙R
𝐹𝐸𝑀Γ

]
Γ| on Γ. These quantities of 𝑋>𝑀𝑀, 𝜗R𝜙 are shown in Table 1.
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From the Table 1 we see that the ELM enrichment based on the loss function (5.5) meets the condition (5.4) accurately, that is, 
‖𝜗R𝜙 − 0‖.∞(Γ) is almost zero, and 

||||
[ 𝐹𝜗R𝜙

𝐹𝐸𝑀Γ

]
Γ
|||| has a positive low bound. The DSNN enrichment has relatively large error, ‖𝑋>𝑀𝑀 −

0‖.∞(Γ). The reason is that the approximation errors of DSNN (other DNN also) have a typical limitation, about 10−5, which is difficult 
to improve by adjusting network parameters. The accuracy loss in the DSNN enrichment will damage the optimal convergence rate 
of SGFEM, as will be shown in the numerical experiments in the next section. In contrast, the ELM can achieve high approximation 
accuracy for complex interface curves. Therefore, we suggest the use of ELM enrichment in the SGFEM in this study.

6. Numerical results

We consider the model problem (2.2) in a domain Ω= (0,1)2 with various curved interfaces Γ for the numerical experiments. The 
uniform 𝑀 × 𝑀 square FE mesh is used to discretize the domain Ω = (0,1)2 with the mesh parameter 𝐶 = 10𝑀. The nodes associated 
with the mesh are denoted by {𝜉𝜆}𝜆∈𝑘𝐶 , where 𝑘𝐶 is the index set. The meshes are not fitted to the interface. We will test different 
efficient materials, 𝜅0 and 𝜅1. We set the manufactured exact solution 𝑇 of (2.2) in the tests, and the loading functions 𝑧 ,𝑗 of (2.2)
are calculated by using equation (2.2) and the manufactured exact solution 𝑇.

We will test the two ML enrichments with the learning schemes (5.5), DSNN and ELM, in the SGFEM (3.11), and identify the 
method with the best approximation result. We also test the existing enrichments in the literature for comparison and verification of 
Theorem 4.3. We list them in what follows: Specifically, the tested enrichments are the following:

• DF-the distance function (3.3), 𝑖,
• ODF-the one-side distance function (3.5), 𝐼𝑖,
• EDF-the exponential form of DF (3.6) with L = 3,
• ABDSNN-the absolute of proposed DSNN enrichment (5.2), 𝜅𝜎>𝑋>𝑀𝑀, with the learning scheme (5.5),
• OSDSNN-the one-side DSNN function (5.2), W>𝑋>𝑀𝑀, with the learning scheme (5.5),
• ABELM-the absolute of proposed ELM enrichment (5.2), 𝜅𝜎>𝜗R𝜙 with the learning scheme (5.5),
• OSELM-the one-side ELM function (5.2), W>𝜗R𝜙 with the learning scheme (5.5),

We compute and compare the relative error in the energy norm (EE), i.e.,

𝛽𝛽 =
‖𝑇− 𝑇𝐶‖(Ω)

‖𝑇‖(Ω)
for the approximation solution 𝑇𝐶 obtained from these methods, and the scaled condition number (SCN) of associated stiffness matrices 
$. The SCN of $ is defined by

 ∶= P(%$%), (6.1)
where P(⋅) is 1-condition number of a symmetric matrix, and % be a diagonal matrix with

%𝜆𝜆 =$−102
𝜆𝜆 .

Setting for DSNN and ELM. In the numerical experiments below, we set the parameters in the DSNN and ELM as follows. The DSNN 
structure consists of 4 residual blocks, each of which contains two full connection layers and one residual item, where each layer 
contains 20 neurons, see Fig. 4 Middle. In the ELM, we use ^ neurons with the randomly generated weight and bias parameters in 
[-1,1], see Fig. 4 Right. The least square method [68–71] is used to solve the learning schemes (5.5). The number of sampling points 
for training the DSNN, the learning rate, and the iteration number of DSNN, and the number of neurons in the ELM will be given in 
the following subsections.

Integration for cut elements. We adopt a general numerical integration formula for the cut element. For elements cut by the interface, 
we connect the intersection points of the interface and the boundaries of an element by a straight line, and decompose the element 
into sub-triangles, on each of which the standard Gaussian rule for triangles is employed. We mention that a systematic study on the 
effect of numerical integration is not the objective of this work. We refer to for more details about the numerical integrations for the 
interface problems [23,33,79].

We now present our numerical results in the following sub-sections.

6.1. An interface problem with a circular interface

We first consider a circular interface Γ with the equation (𝑆− 𝑆0)2 + (𝐺− 𝐺0)2 = 𝑙20, where 𝑆0 = 1 √
5
,𝐺0 =

1 √
3
, 𝑙0 =

1 √
10

. In this case 
we set the manufactured solution of (2.2) as follows:

𝑇 =
⎧
⎪
⎨
⎪⎩

2𝜅1−𝜅1𝑙20
(𝜅1−𝜅0)𝑙40

𝑙2 cos(2Y), 𝑙 < 𝑙0 (Ω0),
𝜅1+𝜅0−𝜅0𝑙20
(𝜅1−𝜅0)𝑙40

𝑙2 cos(2Y) + 𝑙−2 cos(2Y), 𝑙 ≥ 𝑙0 (Ω1),
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Fig. 6. Left: a circular interface. The plots in Ω0 of ML methods: Middle: DSNN enrichment; Right: ELM enrichment. 

Fig. 7. EEs of SGFEM with various enrichments for a circular interface, the interface coefficients are left: 𝜅0 = 1,𝜅1 = 10 (] = 10) and right: 𝜅0 = 1,𝜅1 = 100 (c=100).

Table 2
Approximation levels of various ML enrichments 𝜙R to 
the condition (5.4) for the circular interface.

𝜙R ‖𝜙R − 0‖.∞ (Γ) [min,max] of |||
[ 𝐹𝜙R

𝐹 𝐸𝑀Γ

]
Γ
|||

𝑋>𝑀𝑀 2.015E-05 [0.998,1.003] 𝜗R𝜙 1.313E-14 [1.000,1.000] 

where (𝑙,Y) is the polar coordinate at the center (𝑆0,𝐺0). It can be verified that 𝑇 satisfies the interface condition (2.3) and (2.4). The 
mesh on the domain [0,1] × [0,1] is refined with 𝐶−1 = 𝑀 = 2V+1, V = 1,2,⋯ ,7. The interface Γ and a mesh with 𝑀 = 10 are shown in 
Fig. 6 Left. We test two cases of coefficients 𝜅(𝜉 ): (i) 𝜅0 = 1 and 𝜅1 = 10, and (ii) 𝜅0 = 1 and 𝜅1 = 100. Their contrasts are ] = 10 and 
] = 100, respectively.

The numbers of sampling points for training the DSNN and ELM are 340 in this situation. In the DSNN, we set the iteration 
number=10000, [ = 0.1, P1 = 1, the optimizer=“Adam”, the learning rate _ = 0.001. In the ELM, we set 300 neurons, [ = 1, P1 = 1, 
𝑆] = 0,𝐺] = 0, 𝑙] = 1. The approximation levels of various ML enrichments 𝜙R to the condition (5.4) are presented in Table 2, which 
are characterized by ‖𝜙R − 0‖.∞(Γ) and [min,max] of ||||

[ 𝐹𝜙R
𝐹𝐸𝑀Γ

]
Γ
||||. In Table 2 we see that the ELM meet the condition (5.4) perfectly. 

Especially, ‖𝜗R𝜙 − 0‖.∞(Γ) ≈ 10−14 is almost zero. However, the error ‖𝑋>𝑀𝑀 − 0‖.∞(Γ) is relatively larger so that the associated 
SGFEM cannot get the optimal convergence rate, see Fig. 7. The plots of DSNN and ELM enrichments in Ω0 are shown in Fig. 6
Middle and Right.

The EEs and SCNs with respect to 𝐶 of the SGFEM with various enrichments are presented for the different contrasts ] (10 and 
100) in Fig. 7 and Fig. 8, respectively. It is shown in these figures that the SGFEM with the enrichments DF, ODF, EDF, ABELM, 
OSELM can achieve the optimal convergence rate 𝑅(𝐶). This is predicted by the theoretical result, (4.13). Their conditioning is all of 
same order as that of FEM, and the merit of SGFEM is preserved. However, the rates of ABDSNN and OSDSNN are suboptimal, which 
is due to the accuracy loss of ‖𝑋>𝑀𝑀 − 0‖.∞(Γ), as remarked in the end of Section 5. Therefore, the ELM enrichment is suggested in 
this study. Our numerical results point out that there is not an essential difference between the ABELM and OSELM enrichments, and 
thus we will only test the ABELM in the experiment below.
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Fig. 8. SCNs of SGFEM with various enrichments for a circular interface, the interface coefficients are left: 𝜅0 = 1,𝜅1 = 10 (] = 10) and right: 𝜅0 = 1,𝜅1 = 100 (c=100).

Fig. 9. The domain with elliptical interfaces. Left: 𝑜2 = 1
8 ,`

2 = 1 
80 ; Right: 𝑜2 = 1

8 ,`
2 = 1 

800 . 

6.2. Ellipsoid interfaces with differential ratios of major and minor axes

We next test another curved interface problem involving elliptical interfaces Γ with different ratios of major and minor axes as 
follows:

(𝑆− 𝑆0)2

𝑜2
+

(𝐺− 𝐺0)2

`2
= 1,

where 𝑆0 = 1 √
5
,𝐺0 = 1 √

3
. We test the cases (a) 𝑜2 = 1

8 ,`
2 = 1 

80 and (b) 𝑜2 = 1
8 ,`

2 = 1 
800 to verify applicability of the proposed 

general enrichments for varying curvatures. The mesh on the domain [0,1]× [0,1] is refined with 𝐶−1 = 𝑀 = 2V+1, V = 1,2,⋯ ,7. These 
interfaces and a mesh with 𝑀 = 16 are shown in Fig. 9. The manufactured solution of (2.2) we consider is the following:

𝑇 =
⎧
⎪
⎨
⎪⎩

𝜅1(
(𝑆−𝑆0)2

𝑜2 + (𝐺−𝐺0)2
`2 − 1)𝜗2𝑆+𝐺, (𝑆−𝑆0)2

𝑜2 + (𝐺−𝐺0)2
`2 < 1 (Ω0),

𝜅0(
(𝑆−𝑆0)2

𝑜2 + (𝐺−𝐺0)2
`2 − 1)𝜗2𝑆+𝐺, (𝑆−𝑆0)2

𝑜2 + (𝐺−𝐺0)2
`2 ≥ 1 (Ω1).

It can be checked that 𝑇 satisfies the interface condition (2.3) and (2.4). As illustrated in the situation of circular interface, in this 
case we only test the SGFEM with ABELM. The number of sampling points uniformly for training the ELM is 340, we set 300 neurons, 
P1 = 1, 𝑆] = 1 √

5
,𝐺] =

1 √
3
, 𝑙] =

1 √
8
. For case (a), we set [ = 1 × 10−12; for case (b), we set [ = 1 × 10−11. The enrichments of case (a) 

and case (b) is drawn in Fig. 10, and the approximation levels of ELM enrichment to the condition (5.4) are presented in Table 3. For 
Table 3 we see that the condition (5.4) ELM is satisfied with very high accuracy for both elliptical interfaces.
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Fig. 10. The plots of ELM enrichments in Ω0 . Left: 𝑜2 = 1
8 ,`

2 = 1 
80 ; Right: 𝑜2 = 1

8 ,`
2 = 1 

800 . 

Fig. 11. EE of ellipse, left: 𝑜2 = 1
8 ,`

2 = 1 
80 and right: 𝑜2 = 1

8 ,`
2 = 1 

800 . 

Fig. 12. SCN of ellipse, left: 𝑜2 = 1
8 ,`

2 = 1 
80 and right: 𝑜2 = 1

8 ,`
2 = 1 

800 . 

The EEs and SCNs with respect to 𝐶 of the SGFEM with the ABELM are presented for the different ratios of major and minor axes 
((a) and (b)) and different contrasts ] (10 and 100) in Fig. 11 and Fig. 12, respectively. It is clearly shown in Fig. 11 that in the SGFEM 
with the ABELM along with other enrichments all converge with the optimal order 𝑅(𝐶), as predicted in the theoretical result, (4.13). 
The proposed ELM enrichment also applies to the curved interface problems with varying curvatures.
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Table 3
Approximation levels of ELM enrichment to the condition (5.4) for 
the ellipsoid interfaces with different major and minor axes.

𝜗R𝜙 ‖𝜗R𝜙 − 0‖.∞ (Γ) [min,max] of |||
[ 𝐹𝜗R𝜙

𝐹 𝐸𝑀Γ

]
Γ
|||

𝑜2 = 1
8 ,`

2 = 1 
80 1.041E-13 [0.545,1.219] 

𝑜2 = 1
8 ,`

2 = 1 
800 6.593E-13 [0.209,1.276] 

Table 4
Approximation levels of ABELM for the straight 
interfaces.

‖𝜅𝜎>
𝜗R𝜙 − 0‖.∞ (Γ) [min,max] of ||||

[ 𝐹𝜅𝜎>
𝜗R𝜙

𝐹 𝐸𝑀Γ

]
Γ
||||

6.423E-14 [0.893,1.042] 

Fig. 13. The plot of ABELM for the straight interface. 

6.3. Robustness test

We next test the robustness of SGFEM with the enrichment, ABELM. To this end, we fix 𝐶 = 1016 and consider a straight interface 
with equation 𝐺 = 0.5 + a. We consider a = 0.03 × 2−V+1, V = 1,2,⋯ ,20 such that a varies from 3 × 10−2 to 5.72 × 10−8. In this case, 
the interface approaches a mesh-line 𝐺 = 0.5 as a decreases. The number of sampling points uniformly for training the ELM are 340, 
we set 300 neurons, P1 = 1, 𝑆] = 0,𝐺] = 0, 𝑙] = 1, [ = 1× 10−12. The ABELM enrichments for the straight interface is drawn in Fig. 13, 
and the approximation levels of ELM to the condition (5.4) are presented in Table 4. Again the ELM enrichment meets the condition 
(5.4) perfectly.

The SCNs with respect to a of SGFEM with the ABELM are presented in Fig. 14 for the different contrasts ] (10 and 100). It is clear 
from Fig. 14 that the SCN of SGFEM with the ELM enrichment does not change as a decreases (for fixed 𝐶 = 1016). This indicates 
that the proposed SGFEM with ABELM is robust.

7. Conclusions and comments

This paper proposed a general enrichment scheme for SGFEM of interface problem. The SGFEM enriched by such an enrichment 
was proven to converge with the optimal convergence rate. This theoretical analysis also holds for the commonly-used enrichments in 
the literature because these enrichments are special instances of the proposed general enrichment. Based on the general enrichment 
we developed the ML enrichment to replace the distance and level set functions. The ML enrichment possesses the merit in dealing 
with geometrically complex interfaces and reducing the complexity in evaluation of the distance and level set functions. In comparison 
with the DNN enrichment, the ELM enrichment achieved very high accuracy and was highly suggested in the SGFEM of interface 
problem. The extension of ML enrichments to three dimensional interface problems will be investigated in a forthcoming study.
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Fig. 14. The robustness test. 
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